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PREFACE

This document contains the proceedings of the Symposium on "Sensitivity Analysis in
Engineering, " held at the NASA Langley Research Center, September 25-26, 1986. The
symposium was jointly sponsored by the NASA Langley Research Center and Virginia
Polytechnic Institute and State University.

The purpose of the symposium was to disseminate the latest research in the general
area of sensitivity analysis, i.e., the systematic calculation of derivatives of the
response of a physical model with respect to parameters characterizing the model. A
review of recent literature (which the symposium co-chairmen carried out and docu-
mented shortly before the symposium) indicated to us that few engineering disciplines
are more broadly based across disciplinary lines than is sensitivity analysis. In
fact, contributions to research in sensitivity analysis are represented in nearly
every major field from chemistry and physics to structural mechanics, aerodynamics,
thermodynamics, and behavioral psychology. In recognition of the multidisciplinary
nature of sensitivity analysis, the keynote paper was on the subject of sensitivity
analysis in chemistry and physics.

The symposium was organized in the following sessions:

I General and Multidisciplinary Sensitivity

II Static Structural Sensitivity Analysis and Applications
IIT Eigenproblem Sensitivity Methods

v Transient Sensitivity Analysis

\' Shape Sensitivity Analysis

Papers in these proceedings are grouped by session and identified in the contents.
The order of the papers is the order of presentations at the symposium. The papers
contained herein were submitted as camera-ready copy.

The use of trade names or names of manufacturers in this publication does not con-
stitute an official endorsement of such products or manufacturers, either expressed
or implied, by the National Aeronautics and Space Administration.

Howard M. Adelman
Raphael T. Haftka
Symposium Co-Chairmen

iii
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ON DETERMINING IMPORTANT ASPECTS OF MATHEMATICAL MODELS:
APPLICATION TO PROBLEMS IN PHYSICS AND CHEMISTRY*

Herschel Rabitz
Princeton University
Department of Chemistry
Princeton, NJ

SUMMARY

Mathematical modelling must always deal with two general problems.
First, the form, parameters or distributed functions in a mathematical model
are often imprecisely known and their impact on desired objectives or
observables is an important issue. Second, even when the components in a
model are "known" there always remains the fundamental question concerning
the importance and interrelationship between the various components of the
system. The use of parametric and functional gradient sensitivity analysis
techniques is considered for models described by partial differential
equations. By interchanging appropriate dependent and independent variables,
questions of inverse sensitivity may be addressed to gain insight into the
inversion of observational data for parameter and function identification in
mathematical models. It may be argued that the presence of a subset of
dominantly strong coupled dependent variables will result in the overall system
sensitivity behavior collapsing into a simple set of scaling and self similarity
relations amongst elements of the entire matrix of sensitivity coefficients.
These general tools are generic in nature, but the present paper will
emphasize their application to problems arising in selected areas of physics
and chemistry.

INTRODUCTION

Mathematical modelling and analysis has been a traditionally active area
in engineering and this is especially true in recent years with the ready
availability of high-speed digital computers. Such modelling efforts have many
goals, including design, optimization and merely understanding the systems’
components. As an adjunct to these efforts, the tools of sensitivity analysis
provide a natural means to aid in all of these goals and the development of
the subject in engineering has been especially focused on applications to
design and optimization. The ultimate driving force behind all these efforts is
certainly the practical issues of increased reliability, efficiency, etc.

An interesting contrast with the modelling/sensitivity analysis efforts
primarily in engineering occurs upon consideration of analogous problems in
the "fundamental” areas of chemistry and physics. The first point of contrast
is that issues of design and optimization are frequently not relevant in basic

* The author acknowledges support for this
work from the Office of Naval Research.



research studies of chemistry and physics (studies involving problems in
applied physics, industrial chemical processes, etc. would be best categorized
as engineering) . The term "modelling” is also rarely used in the scientific
disciplines and the basic thrust is usually for an attainment of system
understanding. In particular, control variables frequently found in engineering
problems are often absent in the physical and chemical events occurring at
atomic and molecular scales. The lack of practical motivation and these
inherent differences between engineering and scientific problems has apparently
resulted in only a recent realization that the tools of sensitivity analysis have a
potentially valuable contribution to make in chemistry and physics. 16

The differences cited above obscure the overall basic similarity between
mathematically defined engineering and scientific problems. Their common
foundation lies in their basic input-output nature. In addition, the particular
mathematical formulations involved can be quite similar even though the
physical interpretation is different (e.g., the equations of stationary quantum
mechanics are exactly those of classical linear waves). From this general
perspective, a common set of tools may be developed within the framework of
sensitivity analysis of benefit to all the relevant disciplines making use of
mathematical modelling techniques. The present paper will succinctly review
current activity with the topics being primarily in the area of chemical
physics. Special emphasis will be given viewing problems from a functional
perspective rather than treating them as described by a discrete set of input
parameters. This approach is essential in many scientific applications and
often has a similar broad basis in engineering. Although the particular
applications discussed in the paper require more information than provided
here for a full appreciation of their significance, they should be viewed in a
generic context for analogous applications in other possible areas of interest
to the reader. Finally, due to the brief nature of this paper, no attempt will
be made to thoroughly review all recent developments in sensitivity analysis as
applied to chemical physics problems; a series of recent review articles is
available to cover this literature.!~6

BASIC CONCEPTS OF FUNCTIONAI SENSITIVITY ANALYSIS

The problems of interest in chemical physics at the atomic scale or
macro scale are typically described by differential equations of a boundary
value and/or initial value nature. For example, Schrodinger’s equation in
quantum mechanics has the form

ho n? 2
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and the equations of mass conservation in chemical kinetics have the form
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These latter equations follow conventional notation where h is Plancks
constant, m is the mass of the particle interacting with potential V(r) and its
wavefunction ¥(r,t) is evaluated at point r and time t, while C; is the i-th




chemical species concentration, Dj is the corresponding diffusion coefficient
and the reactive flux f; is genegally a nonlinear function of the
concentrations. Although Schrodinger's equation is rigorously the only valid
approach for treating dynamics at the atomic scale, classical mechanics is a
very popular and often quite accurate approach to treating the motion of
atoms and molecules. In this case, Hamilton’s equations

99j  3H 9pj _ _ 8H
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would apply where H(p,q) is the Hamiltonian with i~th coordinate g; and
momentum pj. Various other dynamical equations also occur in statistical
mechanics and in models occurring in all aspects of chemical physics. A
general situation commonly arising, included in the equations above, is the
appearance of coefficients which are functions of either the system
independent or dependent variables. For example, the potential V(r) plays
this role in Schrc;dinger's equation. These functions may be thought of as
input, and two broad categories will arise. First, the form of these functions
may be imprecisely known due to a lack of full understanding of the system
or simply imprecise measurements defining the structure of the functions.
Second, even if the input functions are known precisely, there is typically a
very poor understanding of how the form or structure of these functions
influences the behavior of the equation solutions or observables. As
mentioned in the Introduction, the possibility of varying these functions for the
purpose of optimization will not be explicitly considered here since this is not
often the case. Therefore, the role of sensitivity analysis in chemistry and
physics is largely to provide a means to probe the interrelationship between
the input and output functions (i.e., determine the important aspects of the
system) .

In order to better quantify the above discussion, we may generally write
any of the appropriate differential equations in the following form

Li(r,t,f) =0 (1)

where Lj is the i-th differential operator typically being a nonlinear function of
the elements of the output solution vector #(r,t). Appropriate initial and/or
boundary conditions would be given in order to completely specify the
problem. The parametric functional nature of the differential equations is
evident through the arguments of L; in Eq. (1) depending on position r and
time t. In addition, the boundary conditions may be functions of time and
the initial conditions may be functions of position also acting as another class
of input functions for consideration. Regardless of the circumstance, we may
generally denote the vector of input functions as Q(r,t) and the first variation
of Eq. (1) becomes

=0 (2)
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The first of these terms in Eq. (2) involves the system Jacobian dL;/d€y,
and the second term is the explicit functional derivative of the operator with



respect to the £-th member of the input function set. The solution to this
linear differential equation produces the functional derivative matrix

60,(r,t) /60y (r',t') giving the response of the n-th output at position r and
time t with respect to a disturbance of the 2-th input function a position r’

and time t' such that
bﬁn(zﬁt) - }_‘ﬂj. d['dt' 5ﬁn(£,t)

|
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where 80j(r',t') is an arbitrary infinitesimal functional variation. The matrix
solution to Eq. (2) constitutes what is sometimes referred to as the forward
sensitivity matrix. All of the general applications of sensitivity analysis in
chemical physics have focused on an examination of the sensitivity matrix
elements and perhaps most importantly their manipulation to address other
questions besides mere input-output relations. This point will be emphasized
later in this paper.

Since Eq. (2) is linear, it is quite natural to define a Green’s function
matrix with elements 80n,(r,t) /84, (r',t') having the general interpretation of
the response of @, to a disturbance of the flux {y of the 2-th member of
the dependent variable set. This matrix satisfies the following equation

3 = Bjp B6(r-r') B(L-L") (4)
n 90, og,(r',t’)

The solution to Eq. (2) may be directly expressed in terms of the

Green’s function solution to Eq. (4). In some cases, this can be a practical
numerical procedure but more importantly the elements of the Green’s function
matrix have direct physical significance and in principle measurements in the
laboratory could be performed to determine them. This latter point is
especially important since as commented above many basic problems in

chemistry and physics do not inherently contain laboratory control functions or
variables.

Equation (2) produces the first order functional perturbation coefficients
to the nominal soluton of Eq. (1) as evidenced by Eq. (3). Due care is
needed if the physics corresponds to a degenerative perturbation problem.
Standard procedures exist in this case corresponding to the introduction of
directional derivatives. A variety of numerical techniques have been developed
for solving Eqs. (2) or (4), and detailed information may be found in the
literature. In general, it seems most efficient to solve Eq. (2) by maximally
taking advantage of its structure in relation to the often employed Newton
linearization schemes applied to Eq. (1).

In practice, the coupled differential equations in Eq. (1) are often highly
nonlinear and an interesting type of scaling behavior has been found under
certain conditions.* This situation has not been explored for the case of
functional variations, except for the Green’s function, and for that reason we
shall consider it here in terms of discrete system parameters denoted by the
vector &@. Supposing that a single dominant dependent variable exists one
might expect that a variation in any given system parameter would show up as
significant, provided that the dominant variable significantly responded.

¥H. Rabitz and M. Smooke, "Scaling Relations and Sel)f Similarity

Conditions in Strongly Coupled Dynamical Systems", J. Phys. Chem., in
progress.




Without loss of generality, we may take the dominant dependent variable

as @,(t,@) where time t is taken as the only independent “coordinate" for
simplicity. Often the identification of this dominant variable seems to be
associated with the most strongly coupled nonlinear member entering the
differential equations. Under the assumption of strong dominant dependence,
we may approximate the remaining dependent variables as

On(t,a) =~ Fn(O(L,a)) (5)

where gjn is an appropriate function. The important point is that the
parameter dependence of all the remaining dependent variables is
approximately driven through that of the dominant dependent variable.

This is in keeping with the notion that the dominant variable will pass
judgment over any parameter variation regarding its significance to any of the
remaining dependent variables. A natural consequence of the approximation
in Eq. (5) is the scaling relation

a0y 30,) [80,] [80,]*
[5“7] [aaz] [aE Hat ] (6)

which expresses all the system sensitiviies in terms of those of the dominant
dependent variable and simple temporal slope information. The full
significance of scaling behavior has not been established although it may have
wide applicability in nonlinear systems outside of chemistry and physics.

A MENU OF SENSITIVITY APPLICATIONS IN CHEMICAI. PHYSICS

It is beyond the scope and purpose of this paper to present detailed,
elaborate physical analyses of particular models or problems. Rather, the
examples should be viewed for their generic behavior and as illustrations of
the type of sensitivity technology existing in chemical physics (specific citations
to the literature can be found in refs. 1~6). The best means to present this
information appears to be in the narrative tabular form given below. Finally,
many of the examples carried out thusfar in chemical physics have considered
discrete parameter systems rather than those prescribed from a functional
point of view. This approach was taken even though the physical problems
were functional in nature. Although these studies were often insightful, a
number of cases clearly indicate that the use of a small number of discrete
parameters to represent typical continuous input functions can give misleading
sensitivity results at times. This comment would most assuredly be applicable
to situations outside the realm of chemical physics.

A. Forward Sensitivities

A direct analysis of the gradients introduced in Eq. (2) comprises the
forward problem. The name forward resuits from the fact that the system is
being analyzed from the forward direction whereby the response of the output
to a disturbance of the input is examined. The magnitude, sign and general



behavior of the sensitivity coefficients as a function of their arguments is of
concern. This comment applies to all of the other applications in the
following paragraphs. A wealth of information can be gleaned by such an
analysis and a number of applications have been carried forth. For example,
in the case of molecular collisions, the role of different regions of the
potential function upon the collision cross section has been explored. For
elastic, inelastic and reactive scattering, a wide variety of problems have been
treated in chemical kinetics encompassing temporal, steady-state spatial and
unsteady spatial systems.

B. Inverse Sensitivities

The forward sensitiviies in paragraph A correspond to the logical
definition of the system parameters or input functions as independent variables
and the system observables as dependent variables. The original physical
problem is, of course, cast in this framework but many laboratory or field
measurements are actually done for the purpose of inversion to better quantify
a model. In this sense, one may use a ‘reasonable” zeroth order model and
the accompanying forward sensitivities to calculate corresponding inverse
sensitivites. These may be denoted as 6Ny(r,t)/86€,(r',t') and it is evident
that they give information on the infinitesimal response of the £-th function in
the model to a disturbance of the n-th member of the observation set.
Knowledge of these gradients can be used as a means to design possible
experiments for the ultimate purpose of inversion. In principle, they may also
be employed in an iterative inversion process with real data. Thus far,
applications in chemical physics have been confined to the former case.
lMlustrations have been performed for inverse molecular scattering and chemical
kinetics mechanism identification. These inverse sensitiviies are the first
members of what has been referred to as derived sensitivities since they may
be derived from the forward set in paragraph A above. The forward and
inverse sensitivities are orthogonal complements of each other and more
generally they are related through lLegendre type transformations familiar in
thermodynamics. Exactly the same techniques are employed to generate the
specialized sensitiviies in paragraph C and D below.

C. Parameter Interrelationships

As implied in paragraph B, one may relax the constraints on the original
definiion of the systemn dependent and independent variables or some portion
thereof. In this fashion, it is possible to calculate the possible response of
one system input function to a disturbance of another corresponding to the
gradients 60y (r,t) /60 (r',t'). Nonzero values for these parameter correlation
gradients would imply a relationship between the input functions under the
particular constraint relaxing the role of the system dependent and independent
variables. The behavior of these gradients has implication for the uniqueness
of the system model.




D. Observation Interrelationships

A family of gradients exactly analogous to those in paragraph C can be
generated to study the relationship between different possible observations or
dependent variables in a system. This is a physically meaningful question
since all possible observations or system behaviors derive from the same
underlying model. The particular gradients in this case have the form
60n(r,t) /06y (r',t’) where it is understood that an implied exchange of
dependent and independent variables has occurred. As with the inverse
gradients in paragraph B, these new sensitiviies are also of use in the
design of laboratory or field measurements. Nonzero values for these
gradients imply a relationship between two possible observations and in that
case serious consideration should be given to whether it is worthwhile to
actually perform both measurements. A hierarchy of observations could be
established based on the magnitude of these families of gradients. Little
application has thus far been carried out along these lines.

E. Flux Disturbance Sensitivities

The Green’s function introduced as the solution to Eq. (4) corresponds
to the literal situation of disturbing one of the system dependent variables and
monitoring a response in another. Knowledge of such responses provides a
detailed map of the interconnectivity produced by the physical model. An
interesting point in this regard concerns the fact that the dynamic response of
the actual model can be quite distinct from that implied by the kinematic
structure of the differential equations. A mapping of the system dependent
variable interconnectivity can give valuable insight into which components or
portions of a model are of actual significance to the questions or observations
of concern. Green’s functions are routinely calculated in a variety of
applications in chemical physics for these reasons.

F. Objective Function Sensitivity Analysis

As discussed in the Introduction, many problems in chemical physics are
not posed with well understood observational objectives before actually
investigating the problem. Indeed, the general role of sensitivity analysis in
chemical physics is often to simply identify interesting objectives or model
components worth further study theoretically and experimentally. This
perspective is typically at variance with the situation found in engineering
where the problem is often first posed by stating the desired objective. In
general, any observable feature or objective of the system may be written as
a functional Fi{#] of the system dependent variable vector. Direct functional
differentiation of this object will probe the desired quantity of interest in a
straightforward fashion. An interesting point occurs when this objective can
be identified before actually solving the model. In this circumstance, the well
know adjoint sensitivity analysis method may be employed to efficiently
calculate the sensitivities of the system objectives. This latter procedure has
only been used sparsely in chemical physics thus far for the evident reasons
stated above.



G. Model Reduction

A natural objective in all modelling efforts is to reduce the system
complexity to a level suitable for the questions or tasks at hand. A
procedure such as this is sometimes referred to as lumping, and sensitivity
coefficients provide information relevant to this goal. The forward sensitivity
coefficients in paragraph A may be examined for this purpose and this is
routinely performed. Related more sophisticated manipulation of these forward
sensitiviies can also be considered but much more work needs to be done in
this area to optimally draw on the full variety of sensitivity coefficients. An
ever present danger in system reduction is subsequent misuse of the simplified
model in situations contrary to the assumptions underlying the lumping
procedure; in general, model reduction needs to be performed again for each
new objective.

H. Model Expansion

Although model reduction using sensitivity or other techniques represents
a well established objective, a much more difficult approach to model
improvement entails the expansion of an oversimplified model to a proper level
of sophistication. In general, this problem is not well posed, but there is a
simple quantitative indicator of model expansion that can be performed using
sensitivity analysis. In particular, a common circumstance arises when the
actual model calculations are performed on a simplified system drawn from a
larger body of facts or information as input. For example in the case of
chemical kinetics, often hundreds of possible chemical reactions could be
identified as potentially important beforehand while typically only a small subset
would actually be included in the first zeroth order model. In essence, one
may view the results of such a calculaton as involving the full extended model
but with the appropriate parameters set to a null value. Although the nominal
solution clearly does not contain these parameters, the gradient of the
solution may still be nonzero. Therefore, the sensitivity of the additional
parameters about their nominal null values can be quite easily calculated if
(a) an extended "shopping list” of possible additional system components is
available and (b) if the additional components do not introduce further
dependent variables. Such a sensitivity to missing model components can be
used to que likely new parameters for introduction into the model at their
finite realistic values. Limited applications of this type have been carried out
in chemical kinetics.

I. Parameter Space Mapping

Both functional and parametric gradient sensitivity analysis techniques are
inherently local in nature in that the gradients are evaluated at a nominal
point in parameter or input function space. Such an analysis seems often
quite adequate to establish which aspects of a model are important. As
commented earlier, this latter goal is often the primary motivation for
applications in chemistry and physics. On the other hand, in engineering
and certain scientific applications optimization is the ultimate objective.




Inherently, an optimization entails a search through parameter space and
gradient techniques have an evident limitation. No satisfactory solution is
available for circumventing this difficulty, but some interesting new tools
involving Lie group techniques seem especially attractive. This approach
considers the calculation of a lie generator (first order differential operator)
for prescribing transformations throughout the parameter space. At this stage

only preliminary mathematical analysis and elementary applications have been
considered.

CONCLUDING COMMENTS

Sensitivity analysis clearly provides a powerful set of systematic tools to
analyze models for their physical content and mathematical behavior. Although
extensive applications to scientific problems are relatively recent, there is
much to be gained by an exchange of techniques and ideas between the
engineering and scientific disciplines. Finally, one caveat always worth
keeping in mind is that the conclusions of a sensitivity analysis will always be
predicated on the significance or validity of the underlying model. However,
such caution should never be used as an argument to not perform a
sensitivity analysis, since any model calculations without a sensitivity analysis
will be far less worthwhile.
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Jerzy Kyparisis
Department of Decision Sciences
Florida International University

Miami, Florida

SUMMARY

It has been shown by Fiacco that convexity or concavity of the optimal value
of a parametric nonlinear programming problem can readily be exploited to calculate
global parametric upper and lower bounds on the optimal value function. The
approach is attractive because it involves manipulation of information normally
required to characterize solution optimality. We briefly describe a procedure
for calculating and improving the bounds as well as its extensions to generalized
convex and concave functions. Several areas of applications are also indicated.

INTRODUCTION

We are concerned here with parametric nonlinear programming problems of the
form

min f(x,t) s.t. g(x,t) > 0, h(x,t) =0 P(t)
X z
where f is a real valued function, g and h are vector valued functions, and t is
a parameter vector. The optimal value function of P(t) is defined by

£%(t) = min { £(x,t): x 6 R(t) }
where R(t) is the feasible set of the problem P(t) given by
R(t) = { x : g(x,t) > 0, h(x,t) = 0 }

In this paper we describe a procedure, originally proposed by Fiacco (refs.1,2),
for calculating piecewise-linear continuous global upper and lower parametric bounds
on the convex (or concave) optimal value f*. We also show how these bounds can be
improved in a systematic manner until a desired accuracy, as measured by the
maximal deviation from the optimal value over the interval of parameter values, is
achieved. Extensions of this approach to generalized convex and concave optimal
value functions are discussed as well and current experience with applications is
described.

PRECEDING PAGE BLANK NOT FILMED 11



COMPUTABLE BOUNDS ON CONVEX OPTIMAL VALUE FUNCTIONS

Consider the parametric problem P(t) and assume that its optimal value
function, f (t), is convex. This will be the case if P(t) is a jointly convex
program, i.e. if f is jointly convex in x and t, the components of g are jointly
concave in x and t, and those of h are jointly linear affine in x and t (ref. 3).
The assumptions on g and h can actually be generalized by requiring only that the
map R is convex (ref. 4).

Supgose now that we have evaluated f*(t) and its slope at two distinct values
t! and t? of the parameter t, where (for simplicity) t is assumed to be a scalar.
Then, global definitional properties of convex functions immediately provide global
parametric continuous, piecewise-linear bounds via linear supports and linear
interpolation on the graph of f* over the line segment (¢1,t2). This is illustrated
in figure 1.

Practical implementation of bounds calculations requires only the information
provided by most standard nonlinear programming algorithms. In particular, the
solution of the problem P(t) as well as the associated optimal Lagrange multipliers
must be determined for two distinct parameter values. The Lagrange multipliers will
coincide with derivatives of £% in case f* is differentiable and with subgradients
of £* in case when f* is nondifferentiable and convex. In both cases the
multipliers can be used to compute the lower bounds on f".

Clearly, if f* is convex on the convex set SCEY, then any supporting hyperplane

of the epigraph at any t 6 S provides a global lower bound on f" over S. Both
. . . 1 .2y

upper and lower bounds calculations obyiously apply over any interval (t*,t%) in S,

. % . 1 2 . .
provided that f" is convex over (et, t¢). A standard technlqge for studying f
over (tl, tz) is to consider t(a) = atl + (l—a)t2 and view f° as a fuction of the
scalar parameter a € (0,1). This allows for the simultaneous pertubation of all
components tj of t, which are now linear affine funtions of the scalar parameter a.

A byproduct of this practical approach is the observation that if the feasible
point to set map R is convex then x(a) = ax! + (l—a)x2 6 R(t(a)) if xl & R(tl) and
x2 6 R(tz). This leads to the simple calculation of a feasible parametric vector
x(a) of a problem P(t(a)) whenever the condition is met. Hence we also obtain the
upper bound f (a) = f(x(a), t(a)) on f (t(a)) over (tl,tz). Since the calculation
of x(a) does not depend on f, this does not require f to be convex. If f is jointly
convex in (x,t), then f" is convex and f (a) is a convex bound on or above f and
below the linear upper bound given in figure 1.

The parametric bounds on the optimal value function £* described above were
constrained to one-dimensional perturbations of the parameter vector t. However,
it is a simple matter to extend these bounds to multi-dimensional perturbations of
t.

Suppose, for example, that f* is convex on the convex set ScEF and that we are
interested in bounds on f° for t in some polyhedron M contained in S which is
determined by its extreme points tl, tz, cees t%. To obtain these bounds we need
only to determine the values and subgradients of £* at & points el, ..., t* This
information will be available if we compute optimal solutions x*(t1) and Lagrange
multipliers for £ nonlinear programs P(tl), i=1l,...,1, similarly to the case of
one-dimensional perturbations. If, in addition, R is a convex map, then we can

12




calculate a feasible parametric vector xéa)? for the problem P(t(a)) with t(a) € M,
as a convex Eombinatiog of & solutions x" (t1), i=1,...,l1 as well as a sharper convex
upper bound f (a) on f".

The described approach for calculating parametric upper and lower bounds on
convex f* can be extended to the case of concave optimal value function £*. The
well known sufficient conditions for concavity of £* require that f be concave in t
for t € S and the feasible set R(t) = Ryfor all t € S (that is R(t) must be fixed).
This result can be generalized to programs with perturbed feasible sets R(t) by
assuming that the map R is concave (ref. 4).

If we now assume, similarly to the convex case, that f* is concave over the
interval (tl,t2) and the values and slopes of f* are known at two distind points tl
and t2, then a linear interpolation on the graph of f* will provide a lower bound
while a piecewise linear upper bound will be determined by the slopes of f*. Figure
2 illustrates these bounds.

REFINEMENTS OF OPTIMAL VALUE BOUNDS

In the previous section we described a procedure for calculating piecewise-—
linear optimal value bounds on convex or concave f*(t) over the interval (tl,tz) of
parameter values. We also showed that a parametric feasible solution vector x(a),
a 6 (0,1), is an immediate by-product of this approach. This remarkably regular
behavior is exploitable in a number of ways as will be shown next.

Consider a convex f*(t(a)), where t(a) = at! + (l—a)tz, and view it as a
function of the scalar parameter a 6 (0,1) with upper and lower bounds on f~ as
depicted in figure 1. Suppose that we solve the program P(t(a*)) at some
intermediate value a* € (0,1). Then, this additional solution of P(t(a*)) enables
us to easily calculate sharper piecewise-linear continuous upper and lower bounds

on f*. These new bounds on f* along with previous bounds are illustrated in figure
3.

Moreover, we can calculate a more accurate piecewise-linear continuous feasible
estimate x(a) of the parametric solution vector, which in this case is the linear
intergolation between contiguous optimal solutions of P(t(a)) at three values
a=0,a",1. The feasible solution x(a) allows, in turn, the computation of a sharper
piece-convex continuous upper bound on f*, given by f (a) = f(x(a),t(a)).

Similar sharper piecewise-linear continuous upper and lower bounds can be
computed for a concave optimal value function £* by solving an additional program
P(t(a*)) at some intermediate value a* 6 (0,1). The improved bounds will be
analogous to those depicted in figure 3.

It is clear from figure 3 that by repeatedly solving the program P(t(a)) at
intermediate values of a, the bounds on £* may be quickly and significantly improved.
The value a* of the parameter at which the problem was solved is the value where the
deviation between the current upper bound U and lower bound L, i.e., U(a) - L(a),
is the maximum over the considered interval (0,1). This is an appealing choice,
although other choices might be dictated by other criteria or user interest; eg. it
might be important to know f*(a) accurately only for certain subintervals or certain
choices of a.

13



EXTENSIONS OF BOUNDS TO GENERALIZED CONVEX OPTIMAL VALUE FUNCTIONS

The approaches for calculating parametric optimal value bounds described
earlier can be extended in several ways to include much wider classes of parametric
programs. This means that optimal value bounds are much more widely applicable than
is apparent from the results of the previous sections.

The first extension is obtained by considering structured classes of generalized
convex and concave optimal value functlons Suppose that map R is convex and that
f is quasiconvex in (x,t) for t 6 (t1 t ) Then, f" is also quasiconvex (ref. 5)
and therefore a constant upper bound of f°, given by max {f*(tl), £*(¢2)},
readily available as well as a sharper quasiconvex upper bound f (a) =f&(a),t(a)).
Additional classes of convex and nonconvex programs for which parametric upper
bounds on f* can be computed are those where the objective function and,
consequently, the optimal value function F* are strongly convex, strictly
quasiconvex and strictly pseudoconvex (ref. 5).

Analogous results can be obtained in the concave case. Assume, for example,
that the fea31ble set R is arbitrary and fixed and that f is quas1concave in t for
t 6 (t ,t 2y, Then, quas1concav1ty of ¥ follows (ref. 5) and min {f* (el ), f (tz)}ls
a constant lower bound on f*

The second extension is possible by considering generalized convex programs
which are transformable into standard convex programs. Consider program P(t) with a
convex feasible map R and an F-convex objective function f. That means that the
composed function fp (x,t) = F{f(x,t)} is convex in (x,t) where F is a continuous,
one-to-one function (ref. 6). Thus the optimal value function fp* of a modified
problem Pp(t)

min fp(x,t) s.t. g(x,t) > 0, h(x,t) = 0 PF(t)

is convex and therefore piecewise-linear upper and lower bounds on fF , given by

L(t) < fF*(t) < U(t) can be calculated. Then, since fp*(t) = F{f (t)}, one

1mmed1ate1y obtalns the follow1ng bounds on f*(t) (provided that F is nondecreasing):
{L(t)} < £* (t) < {U(t)} These bounds are in general nonlinear and

nonconvex but, nevertheless, can be calculated without difficulty once the program

Pp(t) has been solved.

EXPERIENCE WITH APPLICATIONS

Several preliminary studies have been conducted to investigate some of the
more immediate computational and practical implications of the outlined approach for
generating global parametric upper and lower optimal value bounds. The procedure
for calculating optimal value bounds for both convex and concave optimal value
functions was implemented by Fiacco and Ghaemi (ref. 7) as an additional module in
the penalty-function based sensitivity-analysis computer program SENSUMT.

Fiacco and Ghaemi (ref. 8) studied a geometric programming model of a stream
water pollution abatement system and calculated bounds on the convex optimal value
(defined as the annual cost of operation) of an equivalent convex program. The
indicated water pollution bounds calculation involved the perturbation of a single
right-hand-side parameter, the allowable oxygen deficit level in the final reach of

the stream, that proved to be the most influential parameter in the prior sensitivity
study.
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Subsequently, Fiacco and Kyparisis (refs. 9, 10) utilized SENSUMT to calculate
bounds on the optimal value function for the same water pollution abatement model
when 30 (not all right-hand-side) most influential constraint parameters were
perturbed simultaneously. In this application, the optimal value function was not
convex in full neighborhood of the base value of the parameter vector. However,

. . *
it was possible to show that the restriction of f"(t) to the subset of parameters
involved in the desired perturbation is convex.

In another study involving the convex equivalent of a geometric programming
model of a power system energy model, to find the turbine exhaust annulus and
condenser system design that minimizes total annual fixed plus operating cost, Fiacco
and Ghaemi (ref. 11) used SENSUMT to obtain bounds on the optimal value function for
a variety of single objective function and constraint parameter changes. A novelty
of this anlysis is the exploitation of problem structure to calculate a nonlinear
lower bound on the optimal value function. In addition, parametric bounds are

computed on the optimal value which is concave for certain perturbations of
objective function parameters.
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Optimal value bounds on convex f”.

Figure 2.

Optimal value bounds on concave £,

17



18

Figure 3.

. *
Improved optimal value bounds on convex f.
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OUTLINE
Optimum sensitivity is defined as the derivative of the optimum design with
respect to some problem parameter, P. The problem parameter is usually fixed
during optimization, but may be changed later. Thus, we can use optimum sen-
sitivity to estimate the effect of changes in loads, materials or constraint
bounds on the design without expensive re-optimization.
Here, we will discuss the general topic of optimum sensitivity, identify

available methods, give examples, and identify the difficulties encountered in
calculating this information in nonlinear constrained optimization.

1. NEEDS

2. DEFINITIONS

3. AVAILABLE METHODS
4. EXAMPLES

5. CONCLUSIONS
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THE NEED FOR OPTIMUM SENSITIVITY

In many situations, we not only want to find the optimum, but we also want to
know how sensitive the optimum is relative to a certain parameter

(i.e. how
stable the optimum is).

When parameter P changes, optimum sensitivity can be used to estimate the

changes in the optimum design variables and objective function without expensive
re—optimization.

In multi-level optimization, we need the derivative of the lower level op-
timum with respect to the upper level design variables.

1. FIND THE CHANGE IN THE OPTIMUM DESIGN DUE TO CHANGES IN LOADS,
MATERIALS, OR OTHER DESIGN SPECIFICATIONS

2. AVOID RE-OPTIMIZATION

3. PROVIDE NEEDED INFORMATION FOR MULTI-LEVEL OPTIMIZATION




THE DEFINITION OF OPTIMUM SENSITIVITY

The mathematical definition of optimum sensitivity is given here. What makes
this unique from what we usually define as sensitivity analysis is that there is
an implied inequality constrained sub-problem. Because of this, it is possible
that the optimum sensitivity may not be continuous at P = pY.

OPTIMUM SENSITIVITY

DF*/DP = LIMIT [F(X*+AX*,P+AP) - F(X*,P)]/aP
Ap—=0
* *
DX /DP = LIMIT [AX /AP]

AP=>»0

WHERE F(X“+AX,P+AP) IS FOUND FROM;
MINIMIZE  F(X,P+AP)
SUBJECT TO;
G;(X,P+AP) < 0 J=1,M

L U -
X[ < Xp < Xg I=1,N
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AVAILABLE METHODS
Several methods have been proposed to estimate the optimum sensitivity of a
design with respect to parameter P. Each of these methods contains certain

assumptions, and these assumptions can be incorrect in some cases. The methods to
be discussed here are listed below.

1. BASED ON THE KUHN-TUCKER NECESSARY CONDITIONS FOR AN OPTIMUM
2. BASED ON THE CONCEPT OF A FEASIBLE DIRECTION
3. BASED ON A LINEAR PROGRAMMING METHOD

4. BASED ON A FULL SECOND-ORDER APPROXIMATION




METHOD 1

The assumption contained in this method is that all of the constraints that
are critical at the optimum will remain critical when P changes infinitesimally.

Differentiation of the Kuhn-Tucker conditions gives n equations.

The assumption gives another K equation, where K is the number of critical
constraints at the optimum.

This method requires second-order information.

Because of the assumption that all critical constraints remain critical, this
method does not recognize the discontinuity which may exist in the optimum sen-
sitivity.

This method gives no assurance that the answer obtained is correct.

METHOD 1: BASED ON THE KUHN-TUCKER CONDITIONS

AT X 6;x*) =0 JeX

VE(X®) + Z NG (X = 0
JEK

THIS LEADS TO THE SOLUTION OF THE FOLLOWING SET OF EQUATIONS;

AnxN Byxk || S Chxl 0
+ = |

BL 0 Ly D 0

KxN KxK Kx1
WHERE ‘
* |
°F (X*) 3%6;(x™) ‘
AIK = —m————— + ) Ay memm———— |
JEK

WITH SIMILAR EXPRESSIONS FOR Big,» Cp AND Dg
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METHOD 2

This method treats the parameter as a new design variable. This enlarges the
design space to nt+l. The assumption contained in this method is that, in the ex-
panded design space, the maximum improvement or minimum degradation in the design
is sought.

This method seeks the cogstrained steepest descent direction in ntl space to
give DX*/DP, and from this DF /DP is calculated directly.

This method requires only first-order sensitivity information.
This method accounts for possible discontinuity of the total derivative.

As with the first method, there is no assurance that the result obtained is
correct.

LINEAR METHOD BASED ON FEASIBLE DIRECTIONS

LINEAR APPROXIMATION: LET Xy, = P
MINIMIZE F(X) = F(X*) + VF(X*)'s
SUBJECT TO;

* *
Gy(X7) + V6 (X)°8<0  Jek
S BOUNDED

*
WHERE Sy = Xp - X; IS EQUIVALENT TO Sy = 0X;/dP

EQUIVALENT PROBLEM:
MINIMIZE ~ YF(X")'S
SUBJECT TO;
veyx*)'s <0 Jek

s'5<1
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METHOD 2B

Two extended forms are available to deal with the possible discontinuity of
the optimum sensitivity. This is necessary because the direction in which P is
changed will determine the value of the sensitivity. If the value is different,
depending on the sign of delta-P, then this indicates that the design will follow
one subset of constraints if P is increased but a different set if P is decreased

This method for dealing with the potential discontinuities of the optimum

sensitivity is somewhat dependent on the choice of the parameter C. Numerical
difficulties can be encountered in deciding the correct value of C.

DEALING WITH DISCONTINUITY DEPENDENT ON THE SIGN OF P

AP >0
MINIMIZE ~ VF(X")'S - CSgyp
SUBJECT TO;

WyEH 80 Jek

s'8<1

AP <0
MINIMIZE ~ YF(X")*S + C'Syy
SUBJECT TO;

Yey(x")'s< 0 JeK

s's< 1
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METHOD 3

Here, we create a Taylor series expansion for the objective function and the
critical constraints. Taking the limit as delta-P goes to zero and keeping the
lowest order terms only produces the optimum sensitivity according to the

original definition.

This method requires solving two resultant LP problems.

This method requires first-order sensitivities only.

This process requires that we pay close attention to whether
delta—-P approaches zero from the positive or negative side.

If the number of the constraints is less than the mumber of design variables,
the LP problems do not have a unique solution.

If a unique solution exists, it is always the correct solution.

LINEAR PROGRAMMING APPROACH

USING THE DEFINITION OF OPTIMUM SENSITIVITY;

KEEP

MINIMIZE ~ VF(X*)°AX + OF(X")/0P°*AP + O(AX,AP)

SUBJECT TO;

Gy(X*,P) + VG (X™)* X + 3G;/0P* P + O(AX,AP) < O

THE LOWEST ORDER TERMS WHEN AP-»0. THIS LEADS TO;
IF AP -> +0 (AP >0):

MINIMIZE ~ VF(X*)*AX/DP + 3F (X*)/3P

SUBJECT TO;

Y6 5(X*)*AX/DP + 365/3P < 0 JEK

IF AP > -0 (AP<0):
MINIMIZE ~ VF(X™)*AX/DP - 9F(X*)/0P
SUBJECT TO;

V6 (X*)'AX/DP - 3G;/0P <O  JEK

J=1,M




METHOD 4

Just as with method 1, this method requires second derivatives. However,
here the second-order information is used directly as an approximate optimization
task.

The parameter P may be treated as an independent design variable, or the
change in P may be specified.

If a small change in P is specified, the method becomes a finite difference

method. When delta-P goes to zero, this method gives the exact answer to a second
order approximation.

The set, K, of retained constraints can include all critical and near criti-
cal constraints, or even the entire set of constraints. Therefore, as P is
changed, a totally new set of constraints can become critical.

Within the limits of numerical precision, this method will always give the
correct solution. The disadvantage is that this problem has a quadratic objective
and constraints and so must be solved by nonlinear programming. It is, however,
quite efficient since it is an explicit problem.

If an attempt is made to simplify this method by linearizing it, the result
is the set of two LP problems given in method 3.

FULL SECOND-ORDER APPROXIMATION

SOLVE THE FOLLOWING EXPLICIT APPROXIMATE PROBLEM:
FIND THE CHANGE S THAT WILL
MINIMIZE ~ F(X",P) + VF(X",P)"S + 0.55TH,s
SUBJECT TO;
G;(X*,P) + V6 (X*,P)'s + 0.55TH;5 €0 Jek
J&,P) + 165(X7,P)°S + 0.58 15 <

S BOUNDED
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AN OPTIMUM CURVE

When P changes, the optimum points X* form a curve in nt+l space. The
sensitivity DX /DP is represented by the tangent of this curve. The curve
nonsmooth, so DX /DP can be discontinuous.

An infinitesimal change in P may cause the curve to leave a currently
cal constraint. This demonstrates the potentially discontinuous nature of
sensitivity.

28
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DISCONTINUOUS DERIVATIVES

This is another graphical example of the discontimuous derivative problem.
In this case, the constrained optimum is found for P=0 to lie on the constraint
boundary. Now if P is increased, the optimum sensitivity will point to the uncon-
strained minimum. On the other hand, if P is decreased, the optimum sensitivity
follows the constraint. Since the total derivative is the scalar product of the

gradient of the objective function with the vector S, it is clear that the optimum
sensitivity is not continuous at X .

> X
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ROTATING SHAFT OPTIMIZATION

This example demonstrates the usefulness of optimum sensitivity as an en-—
gineering approach to frequency domain avoidance. Assuming it is required that
the rotating shaft not vibrate in the domain between 2.8 and 3.5 Hz, the shaft is
first optimized with respect to all other constraints. Then the sensitivity with
respect to the fundamental frequency is calculated and a new optimum design is
projected with a frequency below 2.8 Hz and with a frequency above 3.5 Hz. From
this it appears that it is far more economical to drive the frequency up than to
drive it down. However, this was not known in advance and so it was not known
whether the frequency should be bounded from above or below. Thus, optimum sen-
sitivity provides one means of dealing with a problem in which the design space is
dis joint.

F F T
T L |
|
< L —>
|
t—

OBJECTIVE: MINIMUM WEIGHT. CONSTRAINTS: STRESS, DISPLACEMENT, EULER BUCKLING,
SHELL BUCKLING. PARAMETER P: THE FIRST NATURAL FREQUENCY.

THE OPTIMUM WITHOUT ANY FREQUENCY CONSTRAINTS: w; = 3.1, W* = 27,242
OPTIMUM SENSITIVITY

METHOD 2 METHOD 3 RE-OPTIMIZE

“ 2.8 W' 45,278 +5,278 +6,429
X ~1.65 -1.65 -1.72
X, +0.33 +0.33 +0. 44

Y12 3.5 W +417 +417 +169
X, +0.17 +0.17 +0.17
X2 -0.003 -0.003 -0.011
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10-BAR TRUSS

Here the common l0-bar truss was optimized and the sensitivity was calculated
with respect to the allowable stress in member 9. It is known that the weight of
this structure can be reduced by increasing this allowable stress to a value of
37.5 ksi, but beyond that, no weight reduction is possible. At the initial
optimum, member 10 was at its lower bound. Method 1 assumed, incorrectly, that it
would stay there, while method 2 recognized that this member dimension should be
increased. Using method 3, the allowable stress in member 9 was allowed to change
as an independent variable and this method projected that the optimum allowable
stress is 38.2 ksi, quite close to the actual value of 37.5 ksi. The case at the

bottom of the figure is for optimization at the 37.5 ksi value and shows the dis-
continuity of the optimum sensitivity.

i<—— 360" ——> |€—— 360" —>
e

0

360"

o
IIOOK \l/looK

OBJECTIVE: MINIMUM WEIGHT. CONSTRAINTS: STRESS, MINIMUM GAGE.

PARAMETER P: STRESS LIMIT IN MEMBER 9. INITIAL OPTIMUM 09 = 30 KSI, W' = 1545
SENSITIVITY
CASE 1: PARAMETER METHOD 1 METHOD 2 METHOD 3
DF* /Dog -240.5  -238.4  -178.6
S10 0.00 0.17 0.16
ag -— - 38.2

CASE 2: Og =37.5 KSI, W = 1498, METHOD 2.
bo

9 O DF'/DIy = 215.7  W¥(35) = 1512  CALCULATED W'(35) = 1511

Aoy 0 DF*/DY% = 0.00
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v CONCLUSIONS

#
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Optimum sensitivity in linear programming is a common and widely used tool.
Research in optimum sensitivity for nonlinear problems has not been this success-
ful and it has been shown here that none of the methods is completely
satisfactory. Methods 1-3 often do not provide the correct answer, while method 4
requires second-order information that may be costly to obtain, as well as the
nonlinear optimization of the approximating functions.

The reasons for these difficulties are now beginning to be understood. If
the optimum design is fully constrained and unique, the optimum sensitivity can be
reliably calculated, just as in linear programming. However, if the design is not
fully constrained (fewer active constraints than design variables), the optimum
sensitivity using first-order information will not be unique and second-order in-
formation is essential. Unfortunately, this is the usual case in engineering
design. The reason that first-order information is inadequate is that the higher
order terms cannot be ignored as delta-P goes to zero in the limit.

The need to calculate the optimum sensitivity is a clear one and often jus—
tifies considerable effort. It is this information that is needed to make many
fundamental design decisions. Therefore, improved understanding of these concepts
is useful in the search to extract the maximum information from the optimization
process.

1. IN GENERAL, THERE ARE SITUATIONS WHERE NONE OF THE AVAILABLE METHODS EXCEPT
THE FULL SECOND-ORDER APPROXIMATION WILL GIVE THE CORRECT ANSWER

2. ITERATIVE METHODS USING FIRST- AND SECOND-ORDER INFORMATION SHOULD BE
INVESTIGATED

3. IF SECOND-ORDER INFORMATION IS AVAILABLE, METHOD 4 WILL PROVIDE USEFUL
ENGINEERING WHICH ACCOUNTS FOR NEARBY CONSTRAINTS THAT MAY BECOME CRITICAL
WHEN PARAMETER P IS CHANGED

4. FURTHER RESEARCH IS NEEDED; THE USEFULNESS OF OPTIMUM SENSITIVITY HAS BEEN
CLEARLY SHOWN IN PAST WORK
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Introduction

During the past few years it has been recognized that combining passive structural
design methods with active control techniques offers the prospect of being able to find sub-
stantially improved designs (Refs. 1-3). These developments have stimulated interest in aug-
menting structural synthesis by adding active control system design variables to those usually
considered in structural optimization. An essential step in extending the approximation con-
cepts approach (Refs. 4-6) to control augmented structural synthesis (Ref. 7) is the develop-
ment of a behavior sensitivity analysis capability for determining rates of change of dynamic
response quantities with respect to changes in structural and control system design variables.
Behavior sensitivity information is also useful for man-machine interactive design as well as
in the context of system identification studies. In this work behavior sensitivity formulations

for both steady state and transient response are presented and the quality of the resulting
derivative information is evaluated.
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Augmented Equations of Motion

Consider a structural/control system that can be modeled as an assemblage of frame,
truss and axial actuator elements. When such a system is subjected to harmonic loading con-
ditions the steady state response is of primary interest. It is assumed here that: (1) direct out-
put feedback control is used; (2) actuators and sensors are collocated; and (3) the
structure/control system can be represented by a linear model. Let it also be understood that
the topology, geometric layout, structural material and actuator positions are preassigned
parameters while section properties and gains are selected as design variables.

Dynamic analysis is carried out using the finite element method and Eq. 1 represents
the equations of motion including viscous damping [C], structural damping /y[K], harmonic
applied loads {P(f)}, and control forces {N(f)};. The control forces {N(z)}; are given by Eq.
2, where [G,]; and [G,]; denote the system level position and velocity gain matrices for the
k‘h load condmon Substituting Eq. 2 into Eq. 1 gives Eq. 3, the equations of motion for the
control augmented system, where [C4]; and [K,];, respectively (Eqgs. 4 and 5) are the aug-
mented damping and the augmented stiffness matrices for the k¥ load condition. For the case
of axial actuators used here the system level position and velocity gain matrices are easily

generated following assembly procedures similar to those commonly used in finite element
analysis.

[MI{X}, + [CHXY, + (1 + iDIKI{X}, = {NO} + {PO}
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Dynamic Response Solution

The steady state dynamic response for harmonically loaded (see Eq. 6) damped struc-
tures augmented by a linear direct output feedback control system can be obtained via a fre-
quency response analysis as follows. Substituting Eq. 6 into the control augmented equations
of motion (Eq. 3) leads to Eq. 7, where the complex displacements {X}, are represented by
Eq. 8. It is well known that the steady state solution of Egs. 7 has the form shown in Egq. 9.
Substituting Eq. 9 into Eq. 7, eliminating ¢“* from both sides, and equating the real and ima-
ginary parts leads to a partitioned matrix equation (Eq. 10). For the general case, Eq. 10
represents a 2n x 2n set of indefinite, non-symmetric linear simultaneous algebraic equations
in the unknowns {Cp}, and {C;};, where n equals the number of degrees of freedom in the
system model. For the special case treated here (i.e. collocated axial actuators and sensors) the
efficiency of the solution process can be improved because [K4]; and [C4], are symmetric and
Eq. 10 can be rewritten in the symmetric form shown in Eq. 11.

{P(O} = (P} ¥

©)
[MU{X} + [CATX Y + (KoK}, + HKI(KY, = (P}e’™
0
(X} = {Xphe + i (X}
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(Kple = QFM) | —Cl - KD | [ b | _ { (P }
QIC+¥K] | [k,), - Q2 M) {Cih {0} (10)

k= 1,2,...Kd.
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Dynamic Response Solution (cont.)

The amplitude of the steady state dynamic displacements can be obtained as follows.
Solve Eq. 11 for the primary unknowns {Cp}; and {C;};. Note that €“* can be expressed in
the alternate form given by Eq. 12. Then it follows from Eqgs. 8 and 9 that the steady state
dynamic response is given by Eq. 13 where {Xz}; and {X;}, solve Eq. 1 when the loading
function has the form of a cosine or a sine respectively. When the loading function is
sinusoidal the amplitude of the dynamic displacement for the 7 degree of freedom is given
by Eq. 14. It is worth noting that Eq. 14 is a relatively simple explicit nonlinear expression
for the amplitude of the steady state dynamic response in terms of the primary unknowns of
the analysis, namely {Cp}, and {C;};.

QUCL +YM] | [Kale - QUM) {{cn}k} {{0} }

| [Kali — QFM] | ~Q4Cpli - 1IM] {Cihe {Ph an
\
€™ = cosQ,t + i sin Q¢
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+ ‘({CR}k sianI + {Cl}k COSQkI)
(13)

I Xijk | = [C;?jk + C;jk]%

(14)
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Behavior Sensitivity Analysis

Approximate values of the amplitude for the /* degree of freedom under the & load
condition (X ;) will be obtained by constructing first order Taylor series approximations for

the primary unknowns of the steady state response, namely C rix and C p. Equations (15a)
and (15b) show the first order Taylor series approximations for the primary unknowns of the
steady state response analysis and they are linear in the design variables (i.e. element proper-
ties). Note that the subscript O refers to the base design for which an analysis is available.
Substituting Egs. (15 a,b) into Eq. (14')gives the desired explicit approximation for the ampli-
tude of the j* degree of freedom under the & load condition. It is apparent that the first par-
tial derivatives of the primary unknowns evaluated at the base design must be known in order
to evaluate approximate values of the amplitude. These behavior sensitivity derivatives are
readily found by implicit differentiation of Eq. 11’ (i.e. Eq. 11 written in compact notation
where [A]l, = Q[C4l, +YIM] and [B], = [K ale — Q% [M]) with respect to the design variables
d,, which leads to Eq. 16.
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r r a
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Behavior Sensitivity Analysis (cont.)

Equation 16 is written in a more compact notation in Eq. 17 and it becomes apparent
on examining Eq. 17 that the form of this sensmvn% analys1s is very sjmilar to that which

oK
5 = Vhe=— | 5o | K30 The

terms on the right hand side of Eq. 17 play the role of pseudo-load vectors that are easily

evaluated once the primary unknowns of the analysis have been determined for a base design

by solving Eq. 11._ The solution of Eq. 17 for the desired first derivatives

HCehe . HCikk
and

od, od

r

was previously decomposed into LDLT form when the primary analysis was executed by solv-
ing Eq. 11. Furthermore, the computational efficiency of the primary sensitivity analysis
(solving Eq. 17) can be enhanced by employing the well known partial inverse method to
obtain only the desired partial derivatives. (Ref. 5).
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Numerical Example - Steady-State Response

The quality of the steady state dynamic response behavior sensitivities is evaluated for
the planar grillage shown in Figure 1. The grillage consists of nine aluminum box beams and
is cantilevered at node 1. A dynamic load P(t) = 100.0 N sin (5.0 Hz)t is applied slightly off
the centerline of the grillage at node 8 so that both symmetric and anti-symmetric modes par-
ticipate in the response. Three active control elements placed at nodes 5, 6, and 7 act in the
vertical direction. Two percent structural damping is assumed.

Taylor series approximations based on direct and reciprocal element properties are
compared with the exact results for the maximum steady state vertical displacements at node 7
for various design variables (See Figures 2 through 6). One can see that the difference
between the approximations and the exact displacements is relatively small even when consid-
ering 30 to 40% changes in the primary load-carrying member (i.e., 30 to 40% changes in the
bending inertia for element 1).

In order to study the behavior of the approximations in a near-resonance condition, a
harmonic loading of frequency 20 Hz is applied at node 8. This loading will excite the
flapping - type 5th mode (f5 = 19.63 Hz) of the grillage.

Figures 7 and 8 bring out two major difficulties associated with resonance or near-
resonance situations: (1) the high nonlinearity of the exact response curve; and (2) the non-
convexity of the design space. Nonlinearity of the response curve results in the Taylor series
approximations being of acceptable quality in only a limited interval near the base point (i.e.
t* 10%). Nonconvexity of the design space could lead to local minima in an optimization con-
text. These difficulties lead one to use frequency constraints to avoid the near-resonance con-
ditions in optimum design problems.
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Transient Response Equations of Motion

In applications where the external loading is either not harmonic or cannot be conser-
vatively replaced with an equivalent harmonic loading, peak transient response is a primary
concern. Furthermore, nonlinear on/off controls are well suited to controlling transient
response and they are practical for space-based structures.

The dynamic equations of motion for a finite element representation of a linear struc-
ture augmented by a discrete actuator control system are given in equation 22 where {P(£)} is
the nodal load time history, {u} is a vector of actuator output forces, and [B] is a matrix of
zeroes and ones locating the discrete actuators at nodal degrees of freedom. Vectors of
observed displacements and velocities, {Y} and {Y}, respectively, are available from the con-
trol system sensors and are given in equation 23 where [C] is a matrix of zeroes and ones
locating the discrete sensors at nodal degrees of freedom. The actuator output forces, {u}, are
chosen in a manner which reduces the system response based on the sensor measurements. In
particular, the output force for the nth actuator is given in equation 24 where i, is the output
magnitude for the control system and €, is the velocity threshold.

Transformation of equation 22 from physical space to modal space yields equation 25b
where modal damping has been introduced into the system through the { parameter. The
uncoupled modal equations in 25b are easily solved for the modal coordinates using the

Wilson-0 time-stepping scheme and physical displacements are recovered using the modal
transformation in 25a.

The kth modal second order equation of motion can be written in the equivalent first
order form given by equation 26 where n; = ¢ and n, = q.

[MI{X} + [KI{X} = {P())} + [B}{u}

(22)
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23)
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(25b)
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Calculation of Behavior Sensitivities

Time dependent transient response sensitivities can be obtained by differentiating the
modal transformation given in equation 25a with respect to each design variable (beam ele-
ment section properties and actuator output force levels) to yield equation 27. The first term
in equation 27 is known from the system response solution and the eigenvector sensitivities.

The { q } quantity in the second term is the last desired quantity.

)
od,

The direct way of obtaining these partial derivatives is to differentiate equation 26 (or
equation 25b) with respect to each design variable to obtain equation 28 and time step on

these equations. The computational effort needed to obtain {%iq—} would be KR time step-

r
ping solutions where K is the number of retained modes and R is the number of independent
design variables.

A more efficient way to obtain this last desired quantity is to exploit the special form
of equation 26 by applying the Wilkie-Perkins essential parameter method (Ref. 8). Writing
equation 26 in compact notation yields equation 29a where the [A] matrix in equation 29b is
in Frobenius canonical form with a; = w? and o, = 2L being referred to as essential param-
eters. A sensitivity matrix [€] can be defined as in equation 30. As a consequence of the [A]
matrix being in canonical form, two beneficial properties of the sensitivity matrix are: (1) the
sensitivity matrix has a total symmetry property resulting in all terms on a single anti-diagonal
being equal; and (2) the sensitivity matrix has a complete simultaneity property resulting in all

sensitivity functions for athe canosical system being linear combinations of the modal
n n
response, n; and n,, and —L and —L The equations shown in 31a and 31b result from

30(1 aaz

these two properties.
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Calculation of Behavior Sensitivities (cont.)

Evaluation of the {-%q—} term utilizing the Wilkie-Perkins essential parameter method
r

is done by: (1) differentiating equation 29a with respect to o, to yield equation 32; (2) time
stepping on equation 32; (3) chain ruling from essential parameter space to %esign variable

q
od,

space via equation 33. Thus the computational effort needed to obtain { } has been

reduced from KR time stepping solutions to K.

It should be noted that this method of obtaining behavior sensitivities can only be used
for the passive structural design variables since the essential parameters are independent of the
active control design variables. Sensitivities of the transient dynamic response with respect to
the active control design variables can be obtained by differentiating equation 26 with respect
to the active control design variables to yield 34. Equation 34 is time-stepped for the desired
terms.
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< P = + < b
an “10lim | J-a 0y || ony (32)
. aa‘ P . aal P
99 |_ 9¢ da, + dq 90
od, do, dd, Ju, dd, 33)
( anl ] [ 8nl ]
ad, 0 1 ad, { } 3z,
4 P = 4 * +4b
on, -0} 200 | | 9my od, (34
- adr dk - ad’ dk

43



44

Numerical Example - Transient Response

The same aluminum planar grillage (see Fig. 1) used for the steady state response sen-
sitivities is used to examine the quality of the peak transient response sensitivities. The load-
ing consists of the force time history shown in Figure 9 applied at node 8. A single collocated
sensor/actuator pair is located at node 6 and acts in the vertical direction. Peak transient
response and peak transient response sensitivities were calculated by time-stepping through 1
second in 0.0005 second increments using ten retained modes (frequency content up to 100
Hz) and 2% modal damping.

Exact results for the peak positive and negative displacements at nodes 5 and 7 are
compared with both direct and reciprocal element property Taylor series approximations in
Figures 10 through 22 for a number of different design variables. For design variable changes
up to +20% the approximations are seen to be of acceptable accuracy. Furthermore, the direct
approximations for peak displacements as functions of the actuator force level agree extremely
well with the exact response curve (see Figures 19 through 22).

It should be noted that the degree of conservatism present in either the direct or the
reciprocal section property approximations is not necessarily correlated with its accuracy. For
instance, in Figure 15, the reciprocal approximation is more conservative than the direct
approximation, but is far less accurate for design variable changes greater than 20%.




Conclusions

In this work behavior sensitivity formulations for both steady state and transient
response were developed and the quality of the resulting derivative information was assessed.

Derivatives of the steady state response with respect to both structural and control
design variables for harmonically loaded structures augmented by a linear direct output feed-
back control system were presented. The base design dynamic response was calculated using
a frequency response method which reduced the solution of the complex dynamical equations
of motion to the solution of a 2n x 2n set of linear algebraic equations. The response quantity
sensitivities were obtained directly using the psuedo-load method in its partial inverse form.
Taylor series approximations in both direct and reciprocal element properties were constructed
using this sensitivity information and shown to yield high quality approximations for 30 to
40% design variable changes provided near-resonance conditions are not encountered. When
resonance or near-resonance conditions are present, the approximations for the response quan-
tities are of acceptable quality for a relatively restricted interval around the base design.

Using a normal mode method of analysis, peak transient response and peak transient
response sensitivities were calculated for arbitrarily loaded structures augmented by nonlinear
on/off control actuators. The special form of the modal equations of motion was exploited to
reduce the computational effort needed to obtain transient response sensitivities. These sensi-
tivities were used to construct Taylor series approximations in both direct and reciprocal ele-
ment properties for peak transient response. The approximations are of acceptable quality for
structural design variable changes of up to 20%. The direct approximations in terms of the

controller variables compare very well with the exact response for up to 50% changes in the
design variables.

The results of this paper show that for control augmented structural systems, high
quality approximations for both steady state dynamic response and peak transient response can
be constructed. Therefore, the approximation concepts approach for structural synthesis can

be extended to include both steady state dynamic response (Ref. 7) and peak transient
response.
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OUTLINE

This paper describes the development of an integrated
structure/active control law design methodology for aeroelastic

aircraft applications. The paper gives a short motivating
introduction to aeroservoelasticity and the need for integrated
structures/controls design algorithims. Three alternative

approaches to development of an integrated design method are
briefly discussed with regards to complexity, coordination and
tradeoff strategies, and the nature of the resulting solutions.
This leads to the formulation of the proposed approach which is
based on the concepts of sensitivity of optimum solutions and
multi-level decompositions. The concept of sensitivity of
optimum is explained in more detail and compared with
traditional sensitivity concepts of classical control theory.
The analytical sensitivity expressions for the solution of the
linear, quadratic cost, Gaussian (LQG) control problem are
summarized in terms of the 1linear regulator solution and the
Kalman Filter solution. Numerical results for a state-space
aeroelastic model of the DAST ARW-II vehicle are given, showing
the changes in aircraft responses to variations of a structural
parameter, in this case first wing bending natural frequency.

Introduction

Design Approach

Sensitivity of Optimum

Sensitivity of LQG Solution

Integrated Design Results

Concluding Remarks
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INTRODUCTION

Aeroservoelasticity is defined as the interaction of wunsteady
aerodynamics, elastic structure, and automatic control systems
of an aircraft. This interaction can be either favorable and
unfavorable, that is it can be the source of dynamic responses
of the aircraft which force the redesign of the structure or
flight control system, or it can actually improve the
performance of the aircraft. Examples of aircraft which
exhibited aeroservoelastic problems include the F-16, F-18, and
the X-29, all of which required £flight control system changes
before flight. The Lockheed L1011-500 on the other hand employs
an active 1load alleviation system to reduce wing 1loads and
improve range.

The state-of the art in aeroservoelastic analysis is now to the
point where it is possible in many cases to predict
aeroservoelastic interactions before flight test of the vehicle.
With this capability in hand, the next logical step 1is to
develop design methodologies which use aeroservoelastic
interactions to improve aircraft performance. This paper
describes the initial development of one approach to this
interdisciplinary design problem, concentrating on integrated
design of aircraft structures and control laws.

Aeroservolasticity Is The Interaction

Of Aerodynamics, Structures, And Controls

Favorable And Unfavorable Interactions

Analysis Methods Maturing

Integroted Design Methods In Infancy




DESIGN APPROACHES

There are three possible approaches to integrated structure/
control law design, or for that matter, any integrated design.
These are the simultaneous or combined approach, the series or
sequential approach, and the parallel approach. In the
simultaneous approach, the design problem is formulated as a
single problem by combining the objectives, requirements, and
design variables of the various disciplines into a single set.
The design variables are then selected simultaneously to satisfy
the design requirements and objectives. The drawbacks to this
approach are the resulting size of the design problem and the
difficulty of making reasonable tradeoffs when all the design
criteria are not satisfied.

In the series approach, the individual disciplinary designs are
performed in a logical sequence or series, with each discipline
selecting its own design variables to satisfy its own design
requirements. System performance is assessed at the end of the
sequence, and the process 1is repeated if necessary in an
iterative manner. Again, one of the drawbacks with this
approach is difficulty in making tradeoffs between disciplines,
although a more serious drawback is that the overall system
design is dominated by the discipline which is first in the
sequence. For example, if an aircraft structural design is
completed first, followed by the flight control design, and
unfavorable dynamic iteractions occur, most often the flight
control system design is changed extensively to improve the
overall dynamics while the structural design is held fixed, even
though moderate structural changes may be more effective.

A parallel approach to integrated design has the individual
disciplines performing their designs simultaneously but
independently. At the completion of the design iteration, the
overall system performance is checked and the individual designs
undergo iterations. Of course, some form of coordination must
occur during the iteration process or no improvement in the
system design will be possible. The coordination activity
requires that information about the individual designs and the
relationships of those designs to the other disciplines must be
available. This information is dependent on the actual design
methods that are used as well as the type and form of the design
requirements, objectives, and design variables. The kinds of
information, coordination, and design methods necessary for the
sucessful development of a parallel integrated design
methodology are still open research questions.
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DESIGN APPROACHES
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PARALLEL DESIGN

The successful development of a parallel integrated
interdisciplinary design methodology requires a coordination
strateqgy, the determination of disciplinary design information
requirements, and the selection of design tools for each
discipline which are compatible with the coordination strategy
and information requirements. Based on research conducted at
NASA - Langley Research Center and elsewhere, a multi-level
problem decomposition approach [1,2] is wused to define a
coordination strategy for the integrated structures/control law

design method proposed here. This approach breaks the
integrated design problem down into a heirarchal structure that
naturally reflects the individual disciplinary design

requirements as well as the integrated system design
requirements and objectives. Selecting optimization techniques
for the individual disciplinary design methods allows the use of
the concept of the sensitivity of an optimum solution to fixed
parameters [3] to define the information requirements of the
hierarchical decomposition. That is, for the case of integrated
structure/control law design, the sensitivity of the optimum
structural design to control law design variables is passed to
the coordination level, as is the sensitivity of the optimum
control 1law design to structural design variables. This
information is used at the system design level to make design
tradeoffs between the disciplines in the interest of improving
the system design.

Design Methods: Optimization Techniques

. 3
Information: Sensitivity Of Optimum Desugns[ ]

- 1,2
Coordination: Multilevel Problem Decomposmons[ ]
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INTEGRATED STRUCTURE/CONTROL DESIGN

The selection of multi-level hierarchal problem decompositions,
optimization techniques, and the sensitivities of optimum
solutions leads to the integrated structure/control law design
methodology shown below. The control law and structure designs
occur simultaneously and in parallel, with the recognition that

the two disciplines interact in the actual aircraft. These
designs proceed on the basis of the individual discipline design
objectives and variables. For example, the structural design

might determine structural element sizing to minimize weight
while maintaining stress levels, while the control design picks
control gains to minimize control energy and maintain adequate
stability margins. The sensitivity of the optimum control
design to the structural element sizes, and the sensitivity of
the optimum structural design to the control law gains are then
computed, either by finite differencing of neighboring designs,
or by analytical sensitivity of optimum derivative expressions,
and passed on to the system level. This sensitivity data are
then used as gradient information at the higher level to
determine the most effective tradeoffs to achieve desired system
performance. A key aspect of the research reported here is the
development of analytical sensitivity expressions for the LQG
optimal control law problem, eliminating the need for finite
difference derivative calculations.

System
design
Sensitivitmensitivity
Parameters
Control Structure
design design

Gains A Performance F Sizes

System ! Inter - ‘ System
inputs Control action outputs
=~ system [ 1 Airframe ——




GEOMETRICAL INTERPRETATION OF OPTIMUM SENSITIVITY

The concept of the sensitivity of an optimum solution of an
optimization problem to problem parameters which were held fixed
during the optimization 1is illustrated below. Consider a
conceptual optimization problem where an objective function
J(u,p) is to be minimized by choice of a design variable u, with
some design parameter p held fixed at some nominal value p .
For a different nominal value of the design parameter, say D

the optimum solution of the problem will be different, as shown.
The sensitivity of the optimum solution with respect to the
design parameter p is then the change of the optimum value of
the objective function and the change of the design variable at
optimum due to changes in the parameter. One approach to
calculating these sensitivities is to finite difference
solutions of the problem due to perturbations in the parameter.
Another approach is to obtain analytical sensitivity expressions
by differentiation of the necessary conditions of optimality
with respect to the design parameter, and evaluating those
expressions at the optimum solution, as advocated in [3]. This
approach eliminates the need for numerous perturbed solutions of
the problem and the inaccuracies of numerical approximations of
the sensitivities.

J(u, p) J(py)
A J(Do)
_ 0J*
*pp =1 (pg + 5
p
J*(py)
J*(po) ~ '1
P1 "___--i 5 _*..: _______ ;;'
po ______ u—kﬁ——’-;ﬂ' 5? ,”’
‘.’:—,—ﬁ Z - ]
9 u* uy
P
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COMPARISON OF SENSITIVITY TYPES

The difference between the sensitivity of optimum analysis and a
traditional sensitivity analysis in controls applications can be
highlighted as follows. Consider the time response of some
output Y(t,p) of an optimally controlled dynamic system due to a
specified input. For the nominal value of the design parameter
p., the optimal control law is computed and the time response is
c8lculated. If the value of the design parameter was to change
to p,, but the control law was to remain the same (that is the
control law that is optimal for p_), then the time response to
the same input would change, and a traditional sensitivity
analysis could be wused to predict that change. On the other
hand, if a new control law which is optimal for p, is used, the
time response would again be different from the original, and
from the perturbed control 1law time response as well. The
sensitivity of optimum analysis results can be used to predict
this new optimally controlled system time response analytically.

vip A

Optimum Optimal P,
: Paran;eter control
I

= - control
P -7
Po L~ __ 1 -~ \ Optimal Pq

oz’ »- control
T

]
|
| Traditional ! Perturbed P,
|
|
|
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LOG PROBLEM FORMULATION

The optimal control law formulation to be used in the integrated
structure/control law design algorithim is the standard 1linear
time invariant system, quadratic cost, Gaussian distributed
noise (LQG) optimal control problenm. For the purposes of this
integrated design methodology, the formulation consists of state
space equations of motion, where A is the system state matrix, B
is the control input matrix, C is the controlled output matrix,
D is disturbance input matrix, and M is the measurement matrix
defining the signals to be used for feedback. The vector x is
the system state vector, u is the control input, r is a vector
of external commands, and w_, w,., and v are Gaussian distributed
white noise vectors with noise Intensity matrices WD’ W,., and VvV
respectively. The objective function J to be minimizeg is the
expected value of a quadratic function of the controlled outputs
y and the control inputs u, where the weighting matrices Q and R
are positive semi-definite and positive definite, respectively.
It is assumed that the matrices A, B, C, M, Q, R, and W are
functions of the fixed design parameters p, for whicH the
functional dependence and the derivatives of the matrix elements
with respect to the parameters are known. The solution to this
optimal control problem is known to be the interconnection of
the optimal 1linear regulator with the optimal Kalman Filter
state estimator [4, pg. 390].

X= A+ B(p) (u+r)+ Dwp, + B(Iw,,
y = C(p)x

Z=Mpx+v

_ lim
_T‘we

1 (T _ _
J %ETSO ' Qply + uT R(p)u)dt}

p={ . . .p. . .} = vector of fixed parameters
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LQ REGULATOR SOLUTION AND OPTIMUM SENSITIVITY

The solution of the LQG optimal control problem is the
interconnection of the optimal linear regulator and the optimal
Kalman Filter state estimator. The solution of the optimal
regqulator problem is an optimal feedback gain matrix G
determined by the solution for S of a nonlinear matrix Riccati
equation, where both equations come directly from the necessary
conditions of optimality [5, pg. 148]. The interconnection with
the Kalman Filter is defined by feeding back estimates of the
system states rather than the actual (unmeasurable) system
states. Differentiating the LQG solution equations with respect
to the parameter p gives an expression for the sensitivity of
the optimal gain matrix G which 1is in terms of the sensitivity
of the Riccati equation solution matrix S. The Riccati
sensitivity is obtained from the solution of the linear Lypuanov
equation that results from differentiation of the matrix Riccati

equation with respect to p. (Note that all the other derivative
matrices in the two equations are assumed to be known as part of
the problem formulation.) A property of the regulator solution

is that the matrix (A-BG) is asymptotically stable, guaranteeing
that a unique solution to the Lyapunov equation exists [4, pg.
103].

Necessary conditions
u=-R1BTS % = -6%
0=ATs + SA - SBR™1BTs + cTqQC

Differentiate necessary conditions wnh respecttop
86 _ p-13R p-1pTs, 138 ¢\ p-1578S

op op op op
_ 3S  dS AT 3A, acT 13Q,
0=(A-BG)T L2 +92 (A-B { + C+C
(A-BG) 5 * 35 C) + n S s(.jp pr ap
:
TodC. (QE -1 T _ el 3R p-loT -195)}
+c0ap apR B' - BR apR BT+ BRL) )




KALMAN FILTER AND OPTIMUM SENSITIVITY

The optimal Kalman Filter solution is similiar to the optimal
regulator solution in that the optimal filter gain matrix K is
given in terms of the solution T to the filter nonlinear matrix
Riccati equation. Differentiation of these two equations with
respect to the parameter p gives the filter gain matrix K
sensitivity in terms of the sensitivity of the matrix Riccati
equation solution T. This sensitivity is calculated from a
linear Lyapunov equation obtained by differentiation of the
Riccati equation, which again is known to have a unique solution
because of the asymptotic stability properties of the
coefficient matrix (A-KM).

Necessary conditions :
K=TmTy1
0= AT+ TAT+ DWDT + BW,, BT - TMTv-Imr

Differentiate necessary conditions with respect to p:
0K _oT MT -1 TbM -1

op ~ dp
- 9T, 3T T{_+6AT_6_§T
0 = (A-KMgp + 35 (A-KMIT + 42 T+ T op B
dWu T aBT _famT Ty-10M %
+ 8750087+ oy, 32 T(apv M+ mly-138 )T
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OPTIMALLY CONTROLLED SYSTEM EQUATIONS

The state-space equations of the optimally controlled system can
be written in terms of the optimal gain matrices G and K by
defining a state estimation error vector e which in turn is used
to define a new augmented system state vector. The closed-loop
system equations are then as shown, with the new system state
matrix shown in partitioned form as a function of K and G. The
sensitivity of the new system state matrix with respect to p 1is
calculated in terms of known sensitivity derivative matrices and
the optimal gain sensitivities which have already been
calculated. These results are used with analytical performance
senstivity expressions, such as for eigenvalues and time
responses, to find the changes in optimally controlled system
performance due to changes in system design parameters p.

Define : 2 x-%, %= {xTieT} wT={wl !

Closed Loop

x=Ax+Dw

y= (X

u= 06X
— — — —

| 3A 3B, 3G | 3B, 536
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ANALYTICAL PERFORMANCE SENSITIVITIES

Analytical performance senstivity expressions exist for numerous
dynamic system performance measures in terms of the sensitivity
matrices of state-space systems. These include eigenvalue and
eigenvector sensitivities [6], trajectory (time) and frequency
response sensitivities [7], sensitivity of covariance responses
due to random system inputs and disturbances [8], and singular
value sensitivities [9]. These results are wused in the
integrated structure/control algorithim at the upper level as
gradient information to predict performance changes due to
changes in the structural design parameters.

Eigenvalues/Eigenvectors

Trajectory Responses

Covariance Responses

® Frequency Responses

Singular Value Decompositions
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COMPARISON OF PREDICTED AND ACTUAL CHANGES

Numerical results have been calculated for an integrated design
study of the DAST ARW-II flight test vehicle. This application
involved the design of an optimal LQG control 1law and the
prediction of changes in the optimally controlled response of
the vehicle due to changes in a structural design parameter, in
this case first wing bending natural frequency. For example,
changes in mean square wing tip acceleration and mean square
aileron deflection rate due to changes in wing first bending
frequency for a 12 ft/sec RMS random wind gust environment are
shown below. The sensitivities of the mean square responses to
the structural parameter are the slopes of the solid and dashed
lines, with the lines themselves showing the predicted change in
performance if a new optimal control law was implemented for
various changes in the parameter. The symbols show the actual
change in performance which occurred when the parameter was
varied and the resulting new optimal control law was computed

and implemented. For + or - 10% variations in the wing first
bending frequency the sensitivity based predictions were
reasonably accurate. For larger variations, the predictions
were not as accurate, although the trends were correct. Note

that for reductions 1in wing first bending frequency, both the
acceleration and the <control surface deflection rate were
reduced, whereas if changes were made only in the control law,
the acceleration could only be reduced at the expense of
increased aileron deflection rate. This indicates the potential
benefit of an integrated structure/control law design approach
to improved system performance.
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WING BENDING FREQUENCY VARIATIONS

Shown are two controlled system performance measure changes due
to changes in wing first bending frequency. The top plot is of
changes in the minimum singular value of the 1loop return
difference matrix with the control loops broken at the input to
the system. This measure is an indication of the stability
robustness of the system with respect to gain and phase
variations and unmodelled higher order dynamics, with larger
values over the frequency range implying greater robustness.
For reductions of 10% and 25% in the wing first bending natural
frequency, there is a slight rise in the minimum singular value
at the critical low regions between .1 and 1 rad/sec and again
near. 100 rad/sec. The lower plot shows wing tip acceleration in
g’s due to a commanded pitch over of the vehicle. For 10% and
25% reductions of nominal wing bending frequency there is a
small reduction in transient wing tip acceleration response to
the same manuever, although the steady-state acceleration is the
same. These results again indicate the possibility for
improvements in overall system performance due to integrated
structure/control law design, although other structural
parameters may provide more significant changes in performance
and thus be more useful from a design standpoint.

1
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CONCLUSIONS AND FUTURE RESEARCH

An approach to parallel integrated interdisciplinary design
using hierarchal decompositions and sensitivity of optimum
solution concepts is under development at NASA-Langley Research
Center. An implementation of this approach for integrated
structure/control law design problems of aeroservoelastic
aircraft is currently under way, and numerical results for an
example problem indicate that an integrated design could lead to
better overall system performance. The development and
implementation of the methodology have also shown that senstivity
of optimum solutions to problem parameters is required for
accurate gradient information at the top (system) level when the
parallel disciplinary design approaches are optimization based,
and that accurate predictions of performance changes due to

reasonable (+ or - 10%) variations 1in parameters are obtained
from the optimum sensitivity results. The continuing research
program is working toward the inclusion of more formal

structural optimization techniques, and to the development of
sensitivity expressions for other, more realistic, optimal
control law problem formulations.

e Sensitivity of Optimum Analysis Required When
Design lterations Use Optimization

¢ Performance Changes Accurately Predicted
For Reasonable Parameter Variations

® Overall System Performance Can Be
Improved By Parallel Intergrated Design

® Need To Develop Analytical Sensitivity
Expressions For More Optimal Control Problems

® Need To Exercise Parallel Design
Methodology Fully
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THE CASE FOR AERODYNAMIC SENSITIVITY ANALYSIS

Jaroslaw Sobieszczanski-Sobieski
NASA Langley Research Center
Hampton, Va

This paper is somewhat unusual since it does not offer any specific
solutions, verified by applications, for its subject problem which is
sensitivity analysis in Computational Fluid Dynamics (CFD). Instead, the
paper makes a plea to the CFD community for extending their present
capability to include sensitivity analysis. The plea is made from the
viewpoint of an aeronautical engineer, not an expert in CFD methods, who
needs the sensitivity information when working at the Junction of
aerodynamics, structures, active controls, and other disciplines whose
inputs need to be integrated in aircraft design. The principal message of
the paper is displayed on figure 1.

THE MESSAGE

® Computational fluid mechanics is advancing rapidly its capability
to calculate aerodynamic forces on wing-body- nacelle-empennage
configurations

® Next logical step: capability to compute sensitivity of these forces
to configuration geometry, i.e., sensitivity derivatives

® Example: 9 (lift)/d (wing sweep angle)

® Urgent need:
¢ | ntradisciplinary: aerodynamic shape optimization

e |nterdisciplinary: integrating aerodynamics with
other disciplines

Fig. 1
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The intradisciplinary applications of the postulated sensitivity analysis
are obvious enough. It has now become quite common to optimize aerodynamic
shapes (illustrated at the bottom of figure 2 by the inset showing an
airfoil and an aircraft planform) by formal algorithms that iteratively
change geometrical variables shown in the inset. Figure 2 depicts one such
procedure composed of an OPTIMIZER which determines the increment of each
geometrical variable (design variable, x), TERMINATOR containing a logic for
stopping the iteration, and ANALYZER (a CFD program) whose task is to
calculate the aerodynamic objective function (F) and constraints (g) for the
geometry modified by the optimizer. Since most of the OPTIMIZER algorithms
commonly in use require derivatives of F and g with respect to the design
variables (x), it would be advantageous for the efficiency and accuracy of
the aerodynamic optimization, if these derivatives were available in the
ANALYZER's output. Thus, the need for a finite difference approximation to
the derivatives, and the associated, costly, repetitive analysis would be
eliminated.

INTRA-DISCIPLINARY APPLICATION:
AERODYNAMIC SHAPE OPTIMIZATION

= Optimization loo
@ Initial X @f P P

Optimizer Iiew 3
(= initial x in first pass)
o o !
Term-lnapon Term.mapon Pre-processor
criteria criteria
satisfied X not satisfied !
Terminator Analyzer
© |
<A Post-processor

z= fla)

Y =] = ~— 0

F(X), (VE(X))
g](x),(ng(X)>
{

Fig. 2
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Going beyond the confines of the discipline of aerodynamics, the aerodynamic
sensitivity information is needed to quantify the effect of the changes in
aerodynamic shape on other disciplines coupled to aerodynamics in the design
process. Figure 3 shows aerodynamics at a central position in the process,
its interactons with other disciplines depicted by two-headed arrows. The
meaning of the arrows may be illustrated by an example of a coupling between
the aerodynamics and structures. A change of the aerodynamic shape causes a
change in the structural response, directly through the geometry and,
indirectly, through the aerodynamic loads. In the opposite direction, the
change in structural response will, of course, influence the aerodynamic
loads through the change of deformation pattern.

To stay within a limited scope, the remainder of this discussion will
concentrate on the interaction among only three disciplines: aircraft
performance, aerodynamics, and structures, to show how the sensitivity
information, including the aerodynamic sensitivity, could be used toward
improving aircraft performance.

AERODYNAMICS INTERACTION WITH OTHER DISCIPLINES
IN AIRCRAFT DESIGN

Propulsion

Aircraft
performance

Active
control

® Sensitivity information
needed to represent . .a.nq
interdisciplinary couplings Structures their sensitivity to shape

in system approach

Fig. 3
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To demonstrate that, figure 4 and the next two figures show what may happen
when a problem encountered in one subsystem, or engineering discipline, is
fixed by the means local to that subsystem or discipline. An example of a
particular stage in the process of aircraft design will illustrate the
point. Suppose that at that stage, the configuration designers had already
set the value of the aspect ratio (AR), a typical configuration design
variable, so as to maximize the aircraft range (R) under the constraint on
the take-off gross weight (TOGW or T). In that decision, they accounted for
the influence of the aerodynamic drag, represented by CD’ fuel weight wf,

and structural weight, ws on R and TOGW. Of course, many more variables are
involved in the real problem, but simplification of the example will help to
make the point.

In the above set of quantities, cD and wf came from the analysis and

experimentation carried out by the group of engineers working with the
configuration and performance aerodynamics. In contrast, the value of
structural weight was available to that group only as a rough estimate.
Now, suppose that the process moves on into the phase of more detailed
structural analysis and design.

A CONVENTIONAL APPROACH:
LOCAL PROBLEM — LOCAL FIX
ircraft: Range R = f, (W, Cy, ... (1)
R is objective function, R = R
max
Ws — structural weight

Constraint:

TOGW: T=f2(WS, Wf,...)\<T0 (2)

Wf — fuel weight

fl’ f2 — computable functions, may be
analytical expressions or computer
programs
Fig. L




At that stage, illustrated by figure 5 below, structural design has advanced
to the point where a flutter analysis was carried out. Let us assume that it
showed the flutter speed VF falling short of the required value Vfreq' With

the wing geometry (AR) having been already set and frozen, the structural
group fixed the flutter problem by stiffening the wing at the weight penalty

made as small as possible, Awmin'

LOCAL PROBLEM, FLUTTER, FIXED BY A LOCAL MEANS
A STRUCTURAL STIFFENING

Airframe:

w_TAW-* w

SO S

Aeroelastic optimization: AW - AWmin

AW — weight penalty

Fig. 5
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The flutter weight penalty was sent back to the aircraft performance group
who added it to the initial estimate of WS and had to compensate for it by

reducing the fuel weight wf to keep TOGW within constraint (assuming

constant payload). The result is a change in performance (R) estimated by
eqs. 1 and 2 in figure 6.

GLOBAL (SYSTEM) CONSEQUENCES OF LOCAL FIX

Aircraft: WS - WS + AWmin requires reduced

fuel W, = W, - AW, because of

f f f
constrained TOGW,
T=1, (W, w,...) =T, hence
Range reduction: R =R, + OR * AW to the first order (1)
0" oW f o
f approximation
Since AWf = -AWmin
R =R, +-R« AW (2)
0 c)WS min
Fig. 6




Examination of the example unfolded thus far leads to the two

observations, shown in figure 7, that summarize what may happen when a local
problem is fixed by local means, but has an impact on the system
performance.

TWO OBSERVATIONS

1. OR/OWg < 0 (of course), hence R - R -AR.
(-AR) is the system performance penalty for a
subsystem modification.

2. The system configuration was not touched. The
constraint (flutter) was satisfied by purely local,
subsystem, means. Since AW = AWy, the
system performance penalty is the smallest
achievable by the local means. To reduce it
further, one needs modification at system level.

Fig. 7T
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This, and the next three figures, will show the potential for improving the
system performance by correcting the subsystem problem by design
modifications at both the local and system levels - a system approach. In
our example, that means unfreezing the configuration geometry (AR) and using
it together with added structural material Awmin to meet the flutter

constraint, while reducing the penalty in the system performance (R)
subjected to the constraint on TOGW.

The upper box in figure 8 symbolizes the performance and configuration
aerodynamics group who sends the data on geometry (AR) and on the
aerodynamic loads magnitude and distribution cp(a.B) to the structures group

depicted by the lower box. The former group's objective is to maximize R
under the constraint on TOGW by means of changing the configuration geometry
AR. The latter group manipulates the structural cross-section dimensions to
meet the flutter constraint at the minimum weight penalty. That penalty is a
computable function of the geometry, (AR), and aerodynamic loads, cp (the

next to the last line on the figure). To the structures group these
quantities are constants, but the configuration group can control them by
means of AR, thus influencing the Awmin' That influence can be quantified

by the chain differentiation shown on the bottom line on the figure.

In that line, the derivatives of fu are derivatives of the optimum design

with respect to the constant parameters of the optimization - a type of
constrained derivative. Algorithms exist (refs. 1 and 2) for computing such
derivatives quasi-analytically, without engaging in repeated optimization of
perturbed geometry. The derivative of cp is a CFD sensitivity derivative

postulated in this presentation.

SYSTEM APPROACH

Aircraft
( system) Objective: R

Cconstraint: TOGW, T < T0
Design variable: Aspect ratio, R

AW(/R, cp)

Local suboptimization

Cp(a, B) Airframe objective
( subsystem) AW ~ AWmin
Constraint:
AW =AW . =f (R,Cq B>)
min 4( p VF > Vfreq
AW _ 6f4 af4 5Cp Design variables:
IR R T acp IR Structural dimensions

Fig. 8




Here, we return to the system level with the information generated in the
discipline of structures. Under the system approach, the information has
been enhanced by the sensitivity of the flutter weight penalty to geometry,
quantified by the derivative of Awmin with respect to AR. The information

now available to the performance and configuration group, and originating in
that group's own work, is shown on line 1, figure 9 (subscript/superscript
"0" refers to the design that has been accomplished and is now to be
modified). The first two derivatives are computable from the performance
analysis, and the third one was discussed at the end of the preceding
figure. The chain differentiation relates the range to geometry.

The extrapolation in eq. 2 using the optimum sensitivity derivative for

Awmin Wwith respect to AR establishes an approximation to the flutter weight

penalty as a function of geometry. Substitutions shown by arrows into the
linear extrapolation for R in eq. 3 lead to the approximation of R as a
function of geometry in eq. 4. The first two terms represent the result
obtained previously under the rule of frozen AR. The square parentheses term
reflects the cumulative, first order effect of geometry on performance,
exerted through a multitude of interdisciplinary effects, each quantified by
a particular term in the parentheses.

SYSTEM SENSITIVITY AND OPTIMIZATION: OBJECTIVE

oC oC
Aircraft | Ry, abARw' gg : aA? ; aa* = aacR : aAg (1)
( system) D D
0 Approximate:
MWonin 0 OAW i
0AW . AWmin - AWmin IR * NRI (2)
min L / 7
AT | S L. & AR (3)
0 " 3lAW) min = OR
R=R. + oR AWO + oR . a(AWmin> +
0 o0(AW) min d0(AW) oR
s oR  %(BWain) G ap G |
b(AWmin) bCp om aCD oR

Fig. 9
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A similar development is shown in figure 10 for the system level constraint
on TOGW leading to a linear approximation in of the constraint as a function
of geometry in eq. 4. Again, the terms in eq.l4 quantify the several,
interdisciplinary influences involved.

0 oC
oT oT Wf D
Approximate:
oW, oC
_ _oT oT ., f,_7D,
T=To *3cam " Moin * 3w "3C, "R AR 2)
AW .
_ 0 min
= AWmin + IR AR (3)
Y From optimum sensitivity analysis
0
T=1 +6T AWmin + oT . (a (Awmin)+ a(AWmin). an )+
0 O(Awmin) a(AWmin) oR acp R
oW oC
oT ,_f ., 7D
taw e, om AR < T @)
Fig. 10




Derivation of R and T as approximate functions of geometry (bottom line
equations in fig. 9 and 10) enables the configuration group to modify the
geometry (AR) toward better performance (R). When modifying AR, the group
is assured that the flutter constraint will be kept satisfied to the first
order of accuracy, because the flutter weight penalty will follow the change
of AR in a way prescribed by eq. 2, figure 9. The change of AR may be
obtained formally by solving an optimization problem defined by egs.? and 2,
figure 11. The resulting performance improvement over the previous case of
the frozen AR is shown by the last term in eq.4. The improvement comes about
because we traded structural weight and aerodynamic drag for each other
while modifying the geometry (a typical design trade-off), and we did it in
a measured way on the basis of the sensitivity derivatives.

SYSTEM SENSITIVITY AND OPTIMIZATION

Conclusion
Find AR, such that
_ oR 0 oR . .
R'R0+—_6(AW) AWmin + IR AR -+ max (1)
Subject to
_ _oT .0 oT_,
T‘To"a(Awmm) MWiin * 3R AR Ty (@) :

Obtain (A!R)opt from 1 and 2, to get Rmax:

_ _OR 0 oR ,
Rmax = Ro* 502wy~ MWnin * & ° AR (3)
—n . OR
Rmax —¥R0 AR + R AR (4)
Obtained Additional
previously term
Fig. 11
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The sensitivity of R to geometry represented by the derivative in the last
term on the preceding figure is the key piece of information necessary to
reduce the system performance penalty paid for the fix of the subsystem
problem (filutter). The expression for the derivative is reproduced in figure
12 (see eq. 4, figure 9), with the source of each partial identified by a
letter code inscribed beneath.

DISCUSSION OF THE OPTIMAL SOLUTION

Total chain-derivative expression for OR/3R is:

or _ or . O(MWpip) Lok 0 (AWin) °C , or . %%
0 0 (AW) R ) ( AWmin) an R acD R
P S P ASF A P A
ST

® Existence of the additional term in equation for Rmax allows

to recover a part of the performance penalty —

® Sources of derivatives: P - performance, S - structures,
ASF - aeroelasticity and flutter,
A - aerodynamics, ST - steady,
U - unsteady

Fig. 12




Before we take a closer look at availablity eof the derivatives at the
appropriate sources, let us devote one figure (fig. 13) to adress the
obvious question that arises at this point: "Why not to get whatever
derivatives are needed by a straightforward finite difference technique 2",
To supplement the figure, let us assure the reader that we do not
dogmatically favor the quasi-analytical way over the finite difference way
of computing the derivatives. If someone overcomes the computational cost
impediment in a finite difference technique built on top of a CFD analysis -
the resulting tool will certainly be eagerly accepted. However, the point
is that a quasi-analytical alternative to finite difference techniques
exists, and due to experience garnered in other disciplines it deserves a
serious consideration. We will come back to this point again, soon after we
examine, briefly, the derivative availability under the state of the art.

SENSITIVITY DERIVATIVES BY FINITE DIFFERENCE?

® For N variables, the simplest finite difference technique
requires, at least, N + 1 repetitions of analysis

® In real world of enginzering design, that erects a time n
and cost barrier

® Experience from other engineering disciplines suggests
an alternative: quasi-analytical algorithms

® Only one paper in this symposium program refers to

aerodynamic sensitivity analysis — that fact is symptomatic
for the state of the art in CFD

Fig. 13
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Although it is quite clear where each derivative should originate, the
availability is distributed very unevenly, as shown in figure 14. Most of
the pertinent capability exists in structures for derivatives with respect
to cross-sectional dimensions and overall shape (see survey in ref. 3). Some
of that capability became available in production level codes. 1In
aeroelasticity, algorithms exist for computation of the flutter velocity
derivatives with respect to the cross-sectional dimensions (ref. 4), but not
with respect to the overall shape variables. Unfortunately, to the best of
available information, sensitivity analysis in CFD is currently limited to
the capability described in ref. 5 that applies only to linear subsonic
aerodynamics.

AVAILABILITY OF DERIVATIVES

® Performance: Finite difference is inexpensive
® Structures: Analytical derivatives available in production codes
(e.g., NASTRAN)

® Aeroelasticity

and flutter: Analytical derivatives of V_ available

F

® Aerodynamics: A beginning made in steady, subsonic, NASA CR 3713,
1983 (Bristow, MCDAC)

Nothing in transonic

.. . ( Steady
Nothing in supersonic
Nothing in unsteady

Nothing in production level codes

Fig. 1k
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Let us contrast, in figure 15, the finite difference technique with a quasi-
analytical manner of computing the derivatives. Both techniques apply to a
set of equations that, in general, govern a physical problem (this is a
generic discussion, not limited to aerodynamics). The set of equations
appears as the topmost equation on the figure, with y denoting the vector of
solution variables (behavior variables), and x standing for a vector of
design variables that are constant in the process of solving the equations
F, but may vary in the associated design (optimization) problem.

The computational cost of the finite difference approach (line 1) was noted
before. That cost may be avoided by means of a quasi-analytical approach
described by line 2. It begins with setting to zero the first variation of F
with respect to perturbation of an element of the vector x, and leads to a
universal sensitivity equation (eq. 2). That equation can be directly
solved to obtain the vector of derivatives which, in effect, relate change
of the output (y) of the solution of the governing equations (F(y,x) = 0) to
the input (x). Three comments on the nature of the sensitivity equation
(eq.2) are noted at the bottom of the figure. Appendix A provides a self-
contained elaboration on the generic quasi-analytical approach, and Appendix
B illustrates that approach in linear static structural analysis.

ANALYTICAL DERIVATIVES VERSUS FINITE DIFFERENCES

Fly,x) =0, = y; y = y(x) implicitly

e.q., y= Cp (location), x = R, F( ) — an algorithm
L. Finite difference: x = x+ Ax = F(y,x) -y + Ay: 9y = Ay (1)
’ ' ' ©0X Ax
N +1 times for N x's
. ) _ *.OF. oy _ _ oF
2. Analytical. X (Fly,x)) = 0 3y TaX - T 3x (2)
® Eq. 2 is linear with respect to 0y/dx, even though F(y,x) may be

nonlinear
® £q. 2 is noniterative, even if Fly,x) = 0 is iterative

® Ineq. 2, 0F/dy and 0F/dx obtainable either analytically or by finite
difference, then F(y, x) is evaluated, rather than solved Fly,x) =0

Fig. 15
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The conclusion we are now arriving at is that demonstratable improvements in
aircraft performance are achievable by including interdisciplinary
interactions in the configuration shaping decisions. Much of the potential
for these improvements remains either unused, or its exploitation is being
achieved at an excessive computational cost because of the lack of
sensitivity analysis capability in CFD. The postulated remedy is
development of a capability for computation of derivatives with respect to
shape as a routinely available option in the CFD codes. Hence, the
challenge to the CFD community posed in figure 16 closes this paper.

A CHALLENGE FOR COMPUTATIONAL

AERODYNAMICS COMMUNITY
® Derivatives of: Cp(x,y), CD' CL’ CM
® With respect to: Configuration variables,
e.g., Aspect ratio
Sweep angle
Taper
Airfoil shape
Camber ...
Twist, etc. ...

® For sub-, tran-, supersonic, steady, unsteady wing +
full configuration

® Basic formulation + production codes

Fig. 16
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APPENDIX A
GENERAL EQUATION FOR SENSITIVITY

This Appendix is a self-contained tutorial on sensitivity analysis arising
in a generic problem whose governing equations are given. Let

F(y,x) =0 (1)

represent governing equations of a problem in which y is a vector of
unknowns to be obtained by solving eq. 1, and x is a vector of given
constants. The quantities y and x may be vectors, and F may be a vector of
functions. If y is a vector, eq. 1 implies a set of equations whose number
is equal to the length of vector y; however, the x vector may be shorter
than y. Existence of the solution of eq. 1 makes, implicitly, y = f(x). The
functions F may be anything computable : linear algebraical equations, PD
equations, integral equations, or integral-differential equations,
transcendental functions, etc. It may be nonlinear, and may require an
iterative method for solution of eq. 1.

If eq. 1 governs a physical system being designed, then the designer wants
to know not only the y for a given x, but also the sensitivity of b to those
x-quantities that he controls as design variables. For instance, F(y,x)
might be the Euler equations from which to compute y - the pressure
distribution on a body in airflow, and x might be the body geometry
variables. The designer of the body shape needs to know dy/ dx.

One way to obtain 3y/3x is by finite differences. This requires solving eq.
1 for given x to obtain y. Then assume, for one element of Xx,a perturbation
X x + Ax, and repeat solution of eq. 1 to get y + Ay. Approximation to
dy/9x 1is

9y/3x = Ay/Ax; (2)
This operation must be repeated for all x-quantities of interest and may be
prohibitively computer-intensive, if eq. 1 is expensive to solve. In
addition, the accuracy of 3y/9x will depend on the proper choice of Ax.
An alternative is a quasi-analytical approach. It is called "quasi-" because

the y(x) is known only numerically. However, we know that for Ax, we must
have

F(y+Ay, x+Ax) = 0; (3)

in other words, increase of x must be compensated for by change in y to
preserve the zero value of F. Hence, recognizing that the total derivative
(TD) of F with respect to x is according to the textbook rules of
differentiation for implicit functions

dF/dx = 3F/9x + JF/3y 9dy/9ox; (M)

eq. 3 will be satisfied if

dF/dx Ax = 0 (5)




Substituting eq. U4 into 5, and rearranging, yield
9F/0y 9y/dx = - 3F/3x (6)

Eq. 6 is a general sensitivity equation in which the desired sensitivity
appears directly as the unknown 9y/9x. For vector y of length n, the term
oF/9y is a matrix n * n whose each column is a vector of gradients with
respect to y (a Jacobian matrix), the term 3y/9x is a vector of unknown
derivatives of y with respect to one particular x variable, and the term
oF/9x is a vector of derivatives with respect to the same particular
variable x. Computation of the derivatives of y with respect to several
variables x requires solutions of eq. 6 with many right hand sides - one per
each variable x. Since the Jacobian matrix remains the same for all
variables x, a solution algorithm arranged so as to factor the matrix only
once will be preferred for computational economy.

It is important that eq. 6 is simply a set of linear, algebraical equations

even though eq.1 may be far more complicated than that. The terms 3F/3y and

oF/9x may still not be obtainable analytically. If so, they can be computed

by finite difference, i.e., assuming perturbation x=x+AX and y=y+Ay for each
element of x and each element of y separately, and substituting into eq. 1,

one obtains the respective AF values (upon substitution of x+Ax, or y+Ay, F

in eq. 1 is no longer equal zero, it becomes AF) from which the terms 3F/3dy

and 9F/9x can be computed as in eq. 2.

Computation of the terms 93F/9y and 3F/9x by finite difference is
accomplished by repetitve evaluations of F(y,x) for known y and x, as
opposed to repetitive solutions of F(y,x) = 0 (eq.1) for unknown y required
by eq.2. Hence, the quasi-analytical approach is inherently less computer
intensive than the finite difference procedure based on eq. 2.
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APPENDIX B

Application of the generic, quasi-analytical algorithm for sensitivity
derivatives is illustrated with one example from linear, static, structural
analysis. The governing equations - the counterpart of F(y,x) = 0 - are the
load-deflection equations involving a stiffness matrix K, unknown
displacements vy, and the cross-sectional dimensions Xx as design
variables. The structural sensitivity equation recursively connects to the
load-deflection equations through the solution vector y. Since the matrix
K has to be factored (decomposed) in the process of solving for vy,
significant computational economy may be realized by saving the factored
matrix and reusing it in the solution of the sensitivity equation,

ANALYTICAL DERIVATIVES
IN LINEAR STATIC STRUCTURAL ANALYSIS

Generic Structural
Fly,x) = 0; y= y(x) Kix) ey = P(x); y=ylx)
of L3y _ _df Ly 9K, 0P
dy 9ox 09X Kedx = "3x " Y *ox

y — displacement
X — cross-section dimension

oK 9P Analytically or
0x ' ox by finite differences
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SENSITIVITY OF OVERALL VEHICLE STIFFNESS

TO LOCAL JOINT STIFFNESS

Choon T. Chon
Vehicle Methods and Components Department
Engineering and Manufacturing Staff
Ford Motor Company
Dearborn, Michigan

SUMMARY

The present paper discusses how overall vehicle stiffness is affected by
local joint stiffness. By using the principle of virtual work and the minimum
strain energy theorem, a closed form expression for the sensitivity coefficient
has been derived. The insensitivity of the vehicle stiffness to a particular
joint, when 1its stiffness exceeds a certain value (or threshold value), has been
proved mathematically. In order to investigate the sensitivity of the structure
to the joint stiffness, a so-called "stick" model has been created, and the
modeling technique is briefly described. Some data on joint stiffness of tested
vehicles are also presented.

INTRODUCTION

Over the years, the study of the joint behavior of vehicle structures has been
identified as one of the most important subjects in the automotive industry. It
1s widely known that the flexibility of structural joints can affect not only the
NVH (Noise, Vibration and Harshness) characteristics of the vehicle, but also
other vital structural performance characteristics under various loading condi-
tions (e.g. crash loads, road loads, jacking load, towing load, etc.).

The first study which accounted for the effect of flexible joints on
automotive structural responses was by Chang [1] who used a two-dimensional frame
model for a static analysis. He found that the structural response is far more
sensitive to reducing joint stiffnesses (relative to the baseline values) than to
increasing them. Recently a similar phenomenon was reported by Du and Chon [2],
and it was claimed that there might exist a threshold stiffness value in a given
joint of a vehicle structure. 1In other words, if a joint stiffness exceeds the
threshold value, then the overall stiffness of the structure becomes insensitive
to the particular joint.
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The objective of the present paper is to demonstrate this phenomenon
theoretically by showing that the derivative of the total strain energy with
respect to a particular joint stiffness decreases and becomes zero as the joint
stiffness approaches infinity. It should be noted that under the same loading and
boundary conditions, the structure which contains higher strain energy is less
stiff than the structure with lower strain energy. In this paper, a closed form
expression for the sensitivity coefficient has been derived, using the principle of
minimum strain energy and the principle of virtual work. In order to investigate
the sensitivity of the structure to joint stiffness, a so-called "stick" model has
been created, and the modeling technique is described. The last section discusses
joint behavior, in general, by comparing the analytical results with test data.
Discussion of other component behavior is also given based on the sensitivity
coefficients derived in the paper.

SYMBOLS
Pi generalized force vector
Qj generalized stress vector
uj generalized displacement vector
qj generalized strain vector
S surface of the structure
Sp surface where the force vector, Pi> is prescribed
Su surface where the displacement vector, uy, is prescribed
Djk compliance matrix
U total strain energy
ij free component of Qj
Qt reactant component of Qj
N, total number of redundancies
bn m-th parameter
Ny total number of parameters
ng vector normal to the boundary surface S as shown in Fig. 1
Vi volume in which Dyk depends on by,.
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Un strain energy stored in the volume V due to the external loads pj

Jn m-th joint stiffness

Ug total strain energy stored in a "stick" model under prescribed loading
conditions

Usm strain energy stored in the m-th joint under given external loads

N number of joints

ap joint stiffness multiplication factor

BASIC CONCEPTS

This section summarizes the basic concepts of the general sensitivity study

reported in Refs. [3.5]. They will then be applied to joint behavior in the later
section.

(i) THEORETICAL BACKGROUND - Linearity of the equilibrium and strain-displacement
relations will permit the principle of virtual work to be written as:

fQj Qj* av = fpi ui* ds (1)
v S

where pi and Q3 are any statically admissible fields, and ui* and q-* are any
kinematically admissible fields. In the current paper, the body Tforces are
assumed to be negligible. Note that S = Sp + S, (Fig. 1).

Let the solution of a structural problem for an elastic material be given by
uj, Q;, and q;. These quantities constitute, by definition, both a statically
admissible field and a kinematically admissible field. In addition, qj and Qg
satisfy Hooke's law:

95 = Djk Qk (2)

Note that if the deformations are small, the total strain energy stored in
the loaded system will be equal to the work done by the applied forces. Thus the
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total strain energy U may be expressed in terms of generalized stresses as:

U = 1,2 ijk Qj Q av (3)
\")

Since a structure is, in general, statically indeterminate, one may divide the
generalized stress Qj(xx) at any point Xq into two parts:

Ny
Qj (xg) = Q5% (xg) + T AT(xp) QF (4)
r=1
where As¥ (xp) (r = 1, ..,N.) are linear functions of xj . Then substituting Eq.

R .
(2) intg Eq. (1) and using the principle of virtual work (Eqs. (1) and (4)), one can

prove that

au
(3)

= Dsy AT Qe dv =0
aQt ./; J J

Eq. (5) implies that the quantity U is minimized with respect to the values of
each of the redundancies; Eq. (5) thus yields exactly N, equations from which

the values of the redundancies may be found.

objective, then, 1is to derive a closed form
au/aby,. Differentiating the total

(ii) SENSITIVITY ANALYSIS - The
to the m-th

the sensitivity coefficient

expression for
in Eq. (3), with respect

strain energy, U, which is defined
variable by, leads to the following expression:

au 3XR 3Djk
e =1/2 Djk Qj Qx ng ds + 1/2 Qj Qr av
obp, S db, V db,
3Qj
+ Djk————- Qk dav (6)
\') by

Here Eq. (6) may be considered as material derivative of volume integral [6].

Eq. (6) can be greatly simplified, if one chooses certain types of
parameters. For example, an appropriate choice of cross-sectional properties
(e.g., material property, area, moment of inertia, etc.) of either beam or
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plate/shell structures, makes the first term of Eq. (6) identical to zero. And
since the free components Q;¥ in Eq. (4) are the solutions of the statically
determinate structures, they are independent of cross-sectional properties, which
results in:

3Q' Nr aQr
—3 _ 3 At (7
dby r=

Then using the minimum strain energy principle (Eq. (5)) and Eq. (7), it can be
shown that the last term of Eq. (6) also vanishes. Finally one can rewrite Eq. (6)
as:

au aDjk
—_ = 172 f Qj Q 4V (8)

dby, Vg Pm

It should be noted that the integration in Eq. (8) need only be performed over the
region V, in which Djk depends on by.

In addition, if one can express the compliance tensor Djj as inversely
proportional to b, (i.e., Djk « 1/by, ) in the region V_, then Eq. (8) can be
further simplified:

au 1 ) Up
= - —11/2 Djk QJ Qk dav)] = - — (9)
3bm bm m

Vm

VEHICLE STRUCTURAL MODEL

Before proceeding further, it 1is necessary to describe a vehicle structural
model for the purpose of studying the sensitivity of local joint stiffness to the
overall structural stiffness.

"STICK" MODEL - A "stick" model has been created according to the concept

described in [2] (Fig. 2). This modeling concept is based on the assumption that

beams/frames are the primary load carrying members in a structure.

The model consists of 188 grid points and 259 beam elements. Beams are
modeled with proper offset vectors, which are often very useful when modeling
beams containing eccentricity [7]. Even though there are no shell elements, per

101



se, several equivalent beam elements are introduced to simulate the sheet metal
structures (e.g., floor panel, dashboard, wheel housing, rear quarter panel,
etc.). By equivalent beam elements we mean that sectional properties are computed
as if panels were beams. The Ford Computer Graphics System is used to create the
model. The software for the Ford Graphics System is called PDGS (Product Design
Graphics System) which is a general purpose three-dimensional design and drafting
system. FAST (Finite element Analysis SysTem), which is embedded in PDGS, can be
accessed from the main menu of the PDGS and allows the user to build and modify a
finite element model.

TESTS - Bending and torsional tests were performed on the body structure in
accordance with the Company Test Procedure. The structure was supported at the
center of front and rear wheels. In order to apply the bending load across each
seat position (so-called H-point), a heavy beam was laid on three points (on both
left and right rocker panels and the middle tunnel) with spacers underneath so
that the beam can be levelled with respect to the ground. The beam weighs 4,448.2
N (1,000 1b.). For the torsional test, the applied torque was 3.39 x 10® N-mm
(2,500 ft-1b.) at both centers of the front wheels, while the rear wheel axle was
supported.

ANALYSES - Elastic analyses under bending and torsional loads were performed using
the "stick" model described above with the following boundary conditions and
material properties.

Loading (L.C.) and Boundary (B.C.) Conditions :

(a) Static Bending Analysis

L.C. : Unit downward (-z direction) displacements are prescribed
at both the right and left rocker panels, and the middle
tunnel. This simulates the dead weight applied in the test
setup and these points coincide with the H-point of the
"stick"” model. Since displacements are prescribed instead
of forces as the loading condition, reaction forces at the
loading points are computed, and the deflections are
proportionally adjusted so that the sum of the reaction
forces equals 4448.2 N (1000 1bs.).

B.CG. : Simply supported at both the front and rear wheel centerlines
with one end allowed to move freely in the x-direction.

(b) Static Torsional Analysis

L.C. : Two vertical loads, 4945.0 N (1111.7 1lbs.) each, in opposite
directions, which are equivalent to 3.39 x 106 N-mm (2500 ft-1b
torque) were applied at the centerline of the front wheel axle.

B.C. : Simply supported at the centerline of the rear wheel axle.
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Material and Cross-Sectional Properties:

Young's modulus (E) and Poisson's ratio (v) used in the model are:

E = 2.07 x 10° N/mm? (30.0 x 106 psi)

v =0.3

ACCURACY OF THE MODEL - In this subsection, the analytical results were compared
to the test data to investigate the accuracy of the model.

The overall deformed shapes obtained from the analyses and the tests for both
bending and torsion are compared in Figs. 3a and 3b. The dotted and solid lines
represent the test data and the analysis results, respectively. The abscissa
denotes the =x-coordinate of the body structure from the front to the rear wheel
axles and thus represents the length of the wheel base. The ordinates denote
normalized deflections for the bending analysis and twist angles for the torsional
analysis. Note that these values were measured along the bottom rails of the
structure in the actual test. :

Even though the overall deformed shape from the analysis is in good agreement
with that of the test, the analytical and test curves show a slight discrepancy in
the rear of the vehicle. This may have resulted from the slight difference in the
boundary conditions between the analysis and the test setup. The torsional curve
from the analysis gives a good agreement with the test data. It should be noted
that the curve obtained from the test data has more local fluctuation in
magnitude. Studying the reasons of it is beyond the scope of this report.

A rationale which justifies the concept of a "stick" model approximation for
predicting the overall stiffness of a vehicle structure is established in a
separate paper*. In this paper, it is shown that the upper bounds as well as the
lower bounds of total strain energy are the same for both the vehicle structure
and the corresponding "stick" model.

SENSITIVITY STUDY OF JOINTS

Thus far, the basic concept of derivation of the sensitivity coefficients and

the concept of the "stick" model approximation have been presented. This section
*

Chon, C. T.: "Rationalization of "Stick" Model Approximation," work in
progress.
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describes the application of the above results to the sensitivity study of joints
which affects the overall vehicle stiffness. As mentioned above, it has been
analytically and experimentally demonstrated in [1 & 2] that the joint behavior is
one of the most important factors for the overall stiffness of the body
structure. For the sake of clarity, this section is divided into two subsections:
the cases of a single joint and multiple joints.

A SINGLE JOINT - In the model analyzed, the joint which connects the rocker panel
and the bottom of the B-pillar (see Fig. 4) was identified as the joint to which
the total strain energy was most sensitive. This was done by comparing the
amount  of strain energy stored in the  joints. After introducing a joint
magnification factor which was used in [2] (see Fig. 4 for the joint locations), a
parametric study of the joint behavior was performed. Fig. 5 shows how the total
strain energy of the structure is affected by the joint stiffness of the B-pillar
and the rocker panels. Note that the total strain energy becomes insensitive as
the joint stiffness becomes large. This phenomenon can be explained using the
sensitivity coefficient derived in the previous section (see Eq. (9)) as follows:

Let b, =J, and let Ug be the total strain energy stored in the model under

the prescribed loading conditions (either bending or torsion). Then Eq. (8)
can be rewritten as:

dUg aDjk
= 1/2 Qj Qg dv (10)

Note that integration in Eq. (10) needs only be performed over the volume in which
the m-th joint is contained. Moreover, since the compliance tensor Djij is

inversely proportional to the m-th joint stiffness, J,, the final form of Eg. (10)
is:

8 U

(11)
EA J

It is very important to note from Eq. (11) that the sensitivity coefficient

dUg/8dy, goes to zero as the m-th joint stiffness, J;, approaches infinity.
Mathematically one can write this as:

au

Lim

= 0 (12)
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Eq. (12) proves the phenomenon shown in Fig. 5 for a large value of J; (see region
"Cm"). In addition, it should be noted that the total strain energy also becomes
insensitive to J, as the magnification factor approaches to zero (see region "A"
in Fig. 5). This will be discussed in the next section.

MULTIPLE JOINTS - Eq. (12) can be generalized to compute a derivative of the
strain energy with respect to more than one joint stiffness. Given a group of
joints which are of interest, the associated joint stiffness multiplier, ap, is
defined as:

(Jpsennnnn Joaw) = o (Fpiiinn Joo (13)

The number of joints, N, in one group can be completely arbitrary. Then Eq. (10)
can be modified as:

dug N aDjk
= 3 1/2 QJ Qg dv (14)

P 2-» Vo 2%
2
Again since Djk « 1/ap, Eq. (1l4) becomes

aUgq 1 N 1 N
= — —_— = 1/2-/. Djk QJ Qe dv}l= - — 2 UQ (15)
aC'p @p {-p V& ap 2=p

Note that the individual strain energy has to be summed in this case. Therefore
one can conclude that the following expression is also true:

= 0 (16)

Eq. (15) implies that the strain energy U; is a hyperbolic function of the
multiplication factor of the joint stiffnesses. Fig. 6 shows the total strain
energy variation as functions of the multiplication factor, «,. Again, the total
strain energy becomes far less sensitive if a, exceeds a certain value. This is
the proof of the findings reported in Refs. [1] and [2].
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DISCUSSION AND CONCLUSIONS

EFFECTS OF A SINGLE JOINT - When a single joint is varied, the overall vehicle
stiffness becomes sensitive to the local joint stiffness only within a certain
stiffness range (region "B", Fig. 5). In other words, the structure looses

sensitivity not only when the magnification factor is small (region "A"), but
also when the magnification factor is 1large (region "C"). The latter case has
been proven in the previous section. For an explanation of the former case, one
may consider the concept of a "failure mechanism" which has been used extensively
in the literature on Limit Analysis [8]. Since the structure can sustain the
given load with one or more "yield hinges", as long as the structure does not form
a "mechanism", the structure can be said to have a finite stiffness, which is
shown in the region "A" of Fig. 5. This means that, even if one removes the
particular joint, the structure will still sustain a load within given limits.

EFFECTS OF MULTIPLE JOINTS - In the case of multiple joints, flexible joints have
been introduced by adding 24 rotational spring elements at 12 structural joints in
the model. The joints added in this fashion are shown in Fig. 4. A joint
stiffness magnification factor (see a in Eq. (13)) was introduced and a
parametric study of the joint behavior was performed. Fig. 6 shows a diagram of
the total strain energyof the "stick" model versus the joint stiffness magnifica-
tion factor for both bending and torsional loading cases. Published values for
the joint stiffness obtained from three vehicle tests [ 9] (see Table 1) were used
in the analyses. Table 2 as well as Fig. 6 compares the strain energy of the
"stick" model (which has rigid joints) with strain energy computed using those
three sets of joint stiffness. It is interesting to note that the strain energy
values using the three sets of joint stiffness are all within a range of 3% and
that those values, compared with the values of the "stick" model which has rigid
joints, differ by a maximum of 11%. This means that the actual values of joint
stiffness may be equal to or slightly smaller than the corresponding threshold
values. Unlike in the case of a single joint, the total strain energy becomes
infinitely large as the multiplication factor approaches to zero; this indicates
that the joints shown in Fig. 4 may form a "failure mechanism".

"STICK" MODEL - These findings of the joints support the following hypothesis: A
structure consisting of thin panels surrounded by frames, as 1is typical of
automotive structures, may not be stiffened substantially by the panels under
usual loading conditions, for the panels will buckle or deform 1like thin
membranes, offering mno support at the interior points. Even wunder these
conditions, however, the part of the panel near the edge remains relatively
undeformed, and acts as a gusset which stiffens the joint. This, then, implies
the following modeling technique for the "stick" model of a vehicle structure: (i)
The joints can be treated as rigid in the model, reflecting the fact that the
panels act as gussets; this allows the joint stiffness to exceed the threshold
value, and (ii) Since the panels contribute negligibly to the stiffness of the

structure away from the joints, they do not have to be explicitly included in the
model.
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EFFECTS OF OTHER COMPONENTS - This idea, which has been applied to the joints, can
be extended to other components. Similar phenomena can be seen by varying
stiffness values of other components instead of varying those of just the joints.
Figs. 7a and 7b show how the overall bending stiffness (solid lines) and
torsional stiffness (dotted lines) change with the stiffness of the rocker panels
or the tunnel. Figs. 7a and 7b were generated by varying the stiffness (abscissa)
of the rocker panels and the tunnel, respectively. The ordinates represent the
maximum deflections for bending and the twist angles for torsion, respectively. It
is obvious from both Figs. 7a & 7b that the overall vehicle stiffness is much more
sensitive to the rocker panel than to the tunnel wunder bending as well as
torsional loadings. One can, however, see that the curves of both figures become
flat as the stiffness of these two components increases. This phenomenon can also
be shown using the equations derived in the previous section by replacing the
variable by with the stiffness of either the rocker panels or the tunnel.
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TABLE 1.- MEASURED JOINT STIFFNESS VALUES.*

STIFFNESS (%107 N-mm/rad)

JOINTS

Vehicle A Vehicle B Vehicle C
1 2.12/1.61 3.96/3.48 5.12/3.38
2 3.55/2.46 2.45/3.69 3.48/2.84
3 14.4/3.92 28.7/15.6 18.0/5.14
4 20.1/3.26 39.3/4.51 27 .4/4.12
5 2.35/0.18 2.75/0.12 7.41/0.20
6 10.1/0.54 22.6/1.25 16.9/1.29

(Fore-Aft/In-Outboard)

*(See Fig. 4 for corresponding joint numbers.)

TABLE 2.- COMPARISON OF STRAIN ENERGIES OF "STICK" MODEL AND STRAIN ENERGY
COMPUTED USING JOINT STIFFNESS LISTED IN TABLE 1.

STRAIN ENERGY BENDING TORSION

U ("STICK" MODEL) 7.04x103 (1.00)  2.88x10% (1.00)
U (Vehicle A) 7.79x103 (1.11)  3.17x10% (1.10)
U (Vehicle B) 7.69x103 (1.09)  3.07x10% (1.07)
U (Vehicle C) 7.57x103 (1.08)  3.11x10% (1.08)
N-mm
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Figure 1 - A general body surface S consists of two parts, and S .

Over Sp’
forces are prescribed and over S , displacements are prescrlbed. The

term n is the unit vector normal to the surface.

A
g

| ' o
&

Figure 2 - A typical "STICK" model with cross-sectional shapes of beam elements.
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ABSTRACT

This paper describes a unified theory of design sensitivity analysis of linear
and nonlinear structures for shape, nonshape and material selection problems, The
concepts of reference volume and adjoint structure are used to develop the unified
viewpoint. A general formula for design sensitivity analysis is derived. Simple
analytical linear and nonlinear examples are used to interpret various terms of the
formula and demonstrate its use.

1. INTRODUCTION

Design sensitivity analysis gives trend information that can be used in the
conventional or optimal design process, The subject, therefore, has received
considerable attention in recent years. For a thorough review of the subject Refs.
1 and 2 should be consulted.

The present paper describes a unified variational theory of design sensitivity
analysis of linear and nonlinear structures (geometric as well as physical non-
linearities) including shape, nonshape and material selection problems. The adjoint
variable approach is utilized although the direct differentiation method can be also
easily developed. In Section 2, equations of continuum mechanies for nonlinear
analysis are summarized. They are needed in design sensitivity analysis. A unified
viewpoint for shape and nonshape design sensitivity analysis is described in Section
3. The concept of a reference volume is explained in Section 4. The variational
theory of design sensitivity analysis using adjoint variable approach is developed
in Section 5. The theory is used to solve several simple analytical problems in
Section 6. Finally concluding remarks are given in Section 7.

2. NONLINEAR ANALYSIS

Nonlinearities in structural systems can be due to large displacements, large
Strains, material behavior and boundary conditions, Consistent theories to treat

these nonlinearities have been develOped3’“. We will use the developments and
notations of Ref. 4, and follow the Total Lagrangian (or Lagrangian) formulation,
although updated Lagrangian formulation can also be used. One of the major diffi-
culties in describing nonlinear analysis is the complexity of notation. We will
mostly use standard symbols from the literature for various quantities. Matrix and
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. ST
tensor notations will be used. One major departure from linear analysis is that
quantities must be measured in a deformed configuration. Also, a reference con-
figuration for the quantities must be defined. We will use a left superscript to
indicate the coufiguration in which the quantity occurs and a left subscript to
indicate the reference configuration.

A starting point for theory of nonlinear analysis is the principle of virtual
work for the body in the deformed configuration at time t (load level t):

te £t O t t 0 t t. 0
fo oS-8ge @V = [o of.67u v fo oT-67u arg, =0 (1
v v r
T
where left subscript O refers to the undeformed configuration, a '.' refers to the
standard tensor product and
OV = undeformed volume of the body
SS = Second Piola-Kirchhoff stress tensor
ge = Green-Lagrange strain tensor
gf = body force per unit volume
tu = displacement field
gT = surface traction specified on part of the surface FT
OF = surface of the body
§ = variation in the state fields
Let uO

be the specified displacement on the part Fu of the surface. The variations

of the state fields in Eq. (1) are arbitrary but kinematically admissible. They can
be replaced by any kinematically admissible fields. In particular they will be
replaced by adjoint structure state fields in later derivations. The virtual work
equation can also be written using Cauchy stress tensor and other quantities
referred to the deformed configuration, Transformation can be used to recover
Cauchy stresses from second Piola-Kirchhoff stresses and vice versa. However, in all
the derivations given in this paper we will use the undeformed configuration as the
reference configuration.

The Green-Lagrange strain tensor is given as

t
0

T

TH\T
e = 2 v+ V)T + (70T) ()] (2)

The nonlinear stress strain law, in general, can be written as

t t
oS = ¢(oe,b) (3)

where b is a design variable, Note that for many applications, functional form
for ¢ is not known, In numerical implementations, the explicit form is not
needed. Only an incremental stress-strain relation is required.
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Equations (1) to (3) are nonlinear in the displacement field Yu. There are

several methods for solving such system of equations.5 The incremental/iterative
procedure based on Newton methods is the most commonly used and effective procedure.
This will be summarized here. 1In the derivation of the procedure, it is assumed
that equilibrium is known at t and it is desired at t+At. The state fields are

decomposed asu

t+At t t+At t
u= u+ u;

- w8 = oSt oS (S e of
t+AL t ttat, t Ctrat, ot
0f =o€ T 0% of Tof T ofi T T oT * o (4)
where u = increment in the displacement field
0S = increment in the Second Piola-Kirchhoff stress

€ = increment in the Green-Lagrange strain
Of = increment in the body force

OT = increment in the surface traction
Variation of the strain field is given as

t+AL
8 o€ = 606 (5)

The incremental strain field from Eq. (2) is given as

0f = o® *om (6)
T T4T T THT t T TNT
o€ = %[OVu +(0Vu ) +(0Vu ) (OVtu ) +(OV u ) (OVu )] (7
T T\T
oN = %[(OVU ) (OVu )] (8)

Substituting Egs. (4) - (6) in the virtual work principle, Eq. (1), written at t+At
and using the fact that state at t is in equilibrium, we obtain the following incre-
mental virtual work principle:

t 0 0 0 _
[(Gs + 8).8,€ “av - [ £.ou “av J,T-6u Par, = o (9)
Equation (9) is still a nonlinear in incremental displacement field w. It is
linearized by assuming
8o€ = 848 S = ¢’€.0e (10)

and iteration is used within the load increment to satisfy the equilibrium exactly
at t+At. The finite element procedure has been used to implement the preceding

equations into a computer program ADINA.6



3. UNIFICATION OF DIMENSIONAL AND
SHAPE DESIGN SENSITIVITY ANALYSIS

In the literature, shape and dimension design sensitivity analysis problems
have been treated independently. In the shape problem, domain of the problem is
allowed to vary whereas in the dimensional problem domain is fixed but Ccross-
sectional dimensions are allowed to vary. It will be seen here that when varia-
tional formulation is used and volume integrals are used, there is no distinction
between the two problems.

Consider the general functional requiring design sensitivity analysis:

a(gs,ge,tu,b)odv + fo é(gT,b)OdF + jo A(*u,b)%r

u (11)
V(b) ru(b) FT(b)

v =, T

It can be seen that when design b is changed, the volume of the body as well as its
surface change. As examples, consider optimal design of two simple bodies shown in
Fig. 1. Are these shape or dimensional optimization problems? Our contention is
that although length of the members is not treated as a design variable in these
problems, volume of the body changes whenever any of the indicated design variables
is changed. We must account for variations of the domain of the body while writing
variations of the functional ¢ in Eq. (11). Thus the variational concept for design
sensitivity analysis is slightly different from the corresponding concept used in
purely analysis problems where domain of the body remains fixed (at least in linear
problems). This distinction is important in maintaining generality of the varia-
tional design sensitivity analysis theory where variation of the domain should be
always considered.

DESIGN VARIABLES: wi(x), d(x)

DESIGN VARIABLE: A(x)

Figure 1. Examples of Optimal Design




4, CONCEPT OF REFERENCE VOLUME

The concept of a reference volume is extremely useful in problems where the
volume of the body is changing. The idea, introduced recently in Ref. 7, is to map
volume of the body in various configurations to a reference volume V. This is shown

in Fig. 2. The original volume of the body OV(bo) moves to a volume tV(bo) under a
nonlinear motion. However, both the volumes can be mapped to the fixed reference

volume V under the mappings F1(b0) and Fz(bo) respectively. The design process
changes shape of the body so that its volume becomes 0V(b‘) at the new design b1.

This volume moves to “V(b') under the nonlinear motion. Both these volumes can also
be mapped to the fixed reference volume V.

The concept of reference volume is also quite useful in design sensitivity
analysis. All the integrals of the problem are transformed to the reference volume
using the proper transformation of the independent variables. The mapping to the
fixed volume keeps changing under state or design variations. However, the refer-
ence volume never changes. Thus, when variations of various integrals are taken,
the variations of the reference volume need not be considered. In numerical imple-
mentations, this concept is also very useful. It allows us to discretize the design
problem into design elements that keep the same shape even when the real shape for

1
T
en®

REFERENCE
VOLUME

DESIGN
PROCESS

Figure 2. Concept of Reference Volume



the structure changes during the optimization process. Using the transformation of
independent variables, various expressions are given as

Virtual Work Equation at Load Level t:

o b o o= fto it ot t o= o
[o5:85¢ 9 al - [r.6twy of - [T.6% T dTy = o (12)

Incremental Virtual Work Equation at Load Level t+At:

t - ~— - -—
[(g8+4) -85 9 aV = [ £.6ug dF - [ T.6uT aT, = 0 (13)

Green-Lagrange Strain Tensor:

t 75T t T t T.Tz ST t T t T.Tg
o€ = =[x (V) + (Vu) X+ X (Vu) (Vu)x] (14)

Ny

Incremental Strains:

75T, o T T\Tz . T, o T t T.Tg
0€ - E[x (Ju') + (Vu )X + X (Vu) (Vu)'x

P Xl (9RDR] (15)

on = X D) n")TR) (16)

Functional for Sensitivity Analysis:

t.t t - t - - t - =
o= Gy ges u,b) J di + | g(yT,0) J o + [ nctupy 3 dr, (17
Jacobian of Transformation:
0.0 0
x =X ¥,2) oy x| 5 X=X" J=J]Xn] (18)
r r r
o x, y, z)

In the above equations superscript or subscript r refers to the reference coordi-
nates, J is the area metric, and m is the unit surface normal. Note that all
quantities in the above integrals are functions of the reference coordinates. Also
for oriented bodies such as bars and beams, J and |X| may be different from each
other if we use volume integrals throughout the sensitivity analysis. This can be
observed in the examples discussed later in the paper.

5. ADJOINT STRUCTURE APPROACH FOR
GENERAL DESIGN SENSITIVITY ANALYSIS

Discrete form of the adjoint variable method has been discussed by several

researchers.1’8-13 Variational form of the approach based on material derivative




concept is described in Ref. 13 where sensitivity with respect to shape variations
is also considered. Adjoint structure approach is described in Refs. 14-17. The
approach has been applied to some nonlinear and shape variation problems in Refs.

18-20. Recently, Belegundu21 has traced roots of the adjoint variable method to
methods of sensitivity analysis in optimal control literature. 1In addition, he has
shown that sensitivity analysis methods for static, dynamic, shape and distributed
parameter problems can be viewed as the general Lagrange multiplier method. This
shows that the adjoint variable is also a Lagrange multiplier for the state

equations which gives a sensitivity interpretation for it.22 This interpretation is
extremely useful and leads to some insights into the adjoint variable method. It
also has implications in practical applications and numerical implementations of the
method.

In the following derivation we combine the adjoint structure approach with the
fixed reference volume concept to develop a general theory of design sensitivity
analysis of linear or nonlinear structures. To avoid confusion, we use § and § to
indicate arbitrary variations of the state fields and variations with respect to
design variable, respectively. Also, the notation G,S will be used to indicate

partial derivative of G with respect to gs. Note that design sensitivity analysis

is performed at the final state of the system denoted by left superscript t on
various variables. Thus the virtual work equation (12) holds for the deformed
configuration.

Now taking variation of the functional ¢ in Eq. (17) with respect to design, we
obtain

S = [8GJdV+ [ Gésav+ [ §gdal

+ [ g8 af + [ n&Tar, + [0 arp + Sy - (19)

where Swl represents implicit design variation of ¢ given as

- -t t -
S, = f(G’S.sos * G _Bpe G L8 u) J dv

+ g’T.SgT Jar,+[n §wdar (20)

The basic idea of the adjoint structure approach is to replace the implicit design
variations of the state fields in Eq. (20) by explicit design variations and the
adjoint state fields. To accomplish this we write design variations of various
equations as follows:

Design Variations of the Constitutive Law (Eq. 3):

505 = ¢ _.5.€ + 50 (21)



Design Variations of Strains:

“t ozt o=t
508 = Goe + Goe (22)
where
~t 12T -t T -t T.T=
84€ = E[x (V8™ u) + ( Vs'u )X
f X (vt (9T ¢ X vST) (vstT)TR] (23)
r r r r
=t 1r==T t T t T.T -=
8¢ = E[ax (JVu) + ((Vu) X

¢ 85X (v (v« vty (vha)T ER] (24)
r r r r
Here § represents implicit design variations of the displacements and § the

explicit design variations of the strain fields.

Design Variations of Equilibrium Equation (12):
[3ise® gl + [ (3.3 g al + | ;S.€2 85 al - [ty of
- trwPis oV - [ SiTe® Tl - [ fraw® 8T of. - o (25)
0 0 T 0
where arbitrary variations of the primary state fields in Eq. (12) have been

replaced by the corresponding fields for the adjoint structure denoted by the
superscript 'a'. The adjoint structure and the corresponding state fields are

defined later. Substitute for Sgs from Eq. (21) into Eq. (25), use Eq. (22) and
collect terms:

a ~t =t te = A =t a a s =
[le 4 (Bge+ §oe) + 08.8e? - 5 ru’ + e%5g) 0
t, a ¢t ay < = =t a s t a <= <
f(of.u ;8-€7) 8 av j(sOT.u J+ ;T.u® 8J) dr, = 0 (26)
Now, let us define the adjoint structure as follows:
Loads and Boundary Conditions:
Initial strain field : e = g S
?
Initial stress field : 8% - g .
’
. fa
Body force : fa _ G,u (27)
o . a0
Specified Traction : T = h onT
yu T
Specified Displacements : uaO =-gronrl,
’
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Constitutive Law (Linear):

s? = ¢T .(ea— ey - s?'; 8% = the adjoint stress field, (28)
Virtual Work Equation:
[ st a di - [ £2stug o - | 6% 7 ol = 0 (29)

Substitute Eq. (28) into Eq. (29):

a t ai t o eal (t _ ca (t 5
I(e .¢’e.605 € ’¢,e'605 S .605 £ .5 u) J dv

-f st ary = 0 (30)

Strain Field (Linear in u?®):
T T T
o U (w? ) ¢ (v )X+ B (w® ) ()X
2 r r r
=T t T aT Tz
+ X (rv u ) (rVu ) x] (31)
Substitute the adjoint equilibrium equation (30) into Eq. (26):

a -t a ai ~t a-s

a =t t. =
f[e .¢,€.605 + OS.Ge Gof.u + € '¢,e'50€ + € .09
+ sal.ége s r2.5%] g v - j(gf.ua - BS.ea) §J av
v [(12.5% - §r.u®) T ofy - [ gree® 83 dfp - 0 (32)

Note that the variations of the state fields in Eq. (30) are arbitrary. So,
they have been replaced as Gge = Egs and Gtu = Stu.
Substitute the adjoint loads from Eq. (27) into Eq. (20):
s, = f(eal.égs + sal.EBe + t25%) 0 v
+ [ 120.5% 7 ar (33)

Substitute for 583 from Eq. (21) into Eq. (33):
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gwI = f(gal.¢ E.Sge + eal.g¢ + 82 5k s fa.gtu) J dv

+ -uaO.SgT Jar + [ 10.5% 7 oF (34)

Substitute for Sge from Eq. (22) into Eq. (34):

i . o . . i
GwI = f[(sal.¢’€+ Sal) Goe + (sal.¢’€+ Sal) 60 + a1 .80
#1085 g df ¢ [®050r T ar v [ 105 e T ar, (35)

Substitute Eq. (32) into Eq. (35) and use Eq. (28) to obtain

S.5¢%] g av

EwI = f[gtf.ua -(ea—eai)

0 08¢ - 2.3

t t
0 0
+ f[;r.ua - gs.ea)SJ av + f(gT.ua 8J + SST.u? J)dfT

=t a0 - =
- §,T.u J df (36)

Substitute Eq. (36) into Eq. (19):

<t a a_ ai
Sy = f[dof.u -(e"-¢

).8¢ - S°.5 ¢ - /S.5¢% + 5G|J av

+ f(gf.ua - SS.ea + G)8J di + [(5gd + g8 - ch.uaO Jdr

 ln + gT.u?)ET + (5n + 5i1.00) T]aF, (37)

Equation (37) is a general design sensitivity formula for linear and nonlinear
structures (geometric and material nonlinearities), and shape, non-shape and
material selection problems, Formula also gives sensitivity interpretations of
the adjoint state fields. For example, it shows that the adjoint displacement
field is sensitivity of Ffunctional ¢ with respect to variations of the body
force and surface tractions. This interpretation has been also derived in Refs.
21 and 22 for linear systems using the Lagrangian approach. Formula (37) also
shows that the adjoint strain field gives variations of the functional ¥ with
respect to the constitutive law, the adjoint stress field is related to vari-
ations of ¥ with respect to explicit design variations of the strain field, and
variations of ¢ with respect to variations of J can be recovered using adjoint
and primary fields. These sensitivity interpretations will be observed in the
example problems solved in the next section. These 1interpretations can be
invaluable in practical applications and numerical implementations.




6. EXAMPLE PROBLEMS

Several analytical linear and nonlinear examples are solved to show use of Eq.
(37) and interpretation of various terms. Although these examples are simple, they
can be valuable in gaining insights into numerical implementation for larger complex
problems. Also in using Eq. (37), we will use standard symbols ¢ for stress and ¢
for strain.

Example 1. Bar Under Self Weight

This example is taken from Ref. 7 where sensitivity of tip displacement with
respect to length L is calculated. We will calculate sensitivities with respect to
all parameters of the problem to demonstrate use of formula (37) for material,
cross-sectional and length variations. The problem definition and various trans-
formations are shown in Fig. 3. Small displacements and linear stress-strain law
are assumed. The displacement field for the bar is given as u(x) = fx(2L-x)/2E
where f is the body force per unit volume, Thus

u() = fL2/E;  su(L) = (L2/2E)5f + (fL/E)BL (38)
+ (0)3A - (fL2/28°)3E

There are at least two interpretations of this problem and both can be treated using
Eq. (37).

First Interpretation. In this case, Eq. (37) can be interpreted as a line
integral with x as the only independent variable. The stress-strain law of Eq. (3)
must be interpreted as force-strain law, as the structure is only a line element.
Note that this must be done with the formulas given in Refs. 14, 16, 18 and 20 when

O LLLL8 O 444 O L&l
a=AA l
x=&L Ve x=€L .
-— fla ———
J=AL | J=L
|
] —1 VOLUME | LINE 1—
| MAPPING | __ | MAPPING ‘
3 by 3

DESIGN VARIABLES: f,E, A, L

Figure 3. Bar Under Self Weight
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variations with respect to the cross-sectional area are needed. While using Eq.
(37), the tip displacement can be treated as a boundary term or the interior term.
We will use the latter approach. The functional for sensitivity analysis is given
as

P o= J; u(E)J—1g(E-1)Jd£; G = u(g)J—1g(£-1); G u s J“‘§<g-1> (39)

s

where 8(£-1) is the Dirac delta function. The primary and adjoint fields can be
obtained as

u(g) = fLOE(2-€)/2E; u?(g) = Le/EA
e(£) = fLE(1-E)/E; e2(£) = L/EA
e = e(e)d " = FLO1-E)/E; €2 = €2(£)J7 ' = 1/EA
N = EAe = fAL(1-£); N = EAe? = 1 (40)
where N is the axial force and ¢ = EAe. Equation (37) reduces to
5y = f;(éfua - ¢%¢ - N%e - N§e® + §G)Jde
+ [V(Fu? - Ne? + 6)8dde (41)

0

Note that since we are using line integrals, the body force f = fA must be used.
Various quantities for use in Eq. (#1) are

56 = (ASE + ESA)J ' fL2(1-£)/E; SF = ASF + fSA
8G = -u(E)J_23(5-1)6L; Se = e(£)3J | = -F(1-E)SL/E
52 = 2(e)507 " = -SL/EAL (u2)

Substituting all the quantities in Eq. (41) and carrying out the integrations, we
obtain the required sensitivity equation which is the same as Eq. (38). The
sensitivity interpretations of the adjoint fields can be directly observed.

Second Intepretation. In this case, Eq. (3) will be treated as a volume
integral. The functional for sensitivity analysis is given as

1 1

= [ Tuse-1a diae; 6= (AL T Tue)s (e D) (43)
A

The displacement and strain fields are the same as given in Eq. (40). However, the
stress-strain law is the usual Hooke's Law:
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g = Ee = fL(1-E); o = 1/A (44)
Equation (37) reduces to

oage - 0§ea + SG]JdeE

Ew = ISIK (gfua - sa§¢

* f;fﬁ (fu® - oe? + G)8Jdhdr (45)

Various quantities for use in Eq. (45) are

§¢ = fLSE(1-£)/E; &8J = L&A + ASL; &G = -(A"' + 1™ ")g (46)

Substituting various quantities from Egs. (40), (42) and (46) into Eq. (45), we

again obtain the sensitivity expression given in Eq. (38). The sensitivity inter-
pretation of the adjoint fields can be easily observed.

Example 2. Cantilever Beam

This example is also discussed in Ref.

7 where sensitivity of tip deflection

with respect to the length is given. Figure U defines the problem
mations to the reference volume. The design variables are chosen

The tip deflection using small displacements beam theory is given

and the transfor-
as b = (E,s,h,L).

as w(L) = PL3/3EI

and its variation with respect to the design variables is given as

3 3,3 3..2 2
Sw(L) = - B g - BRI 5 - PRSh 5 L B G ()
3E°I 36EI 12E1
P
‘ \
“------------- 44— X § ————————————— — ¢
1 ELL | ) (3+3)
l W
z U
y=sn 11
N z=ht (23 I
s g
V=AL=Lhs J=AL V=1

Figure 4, Cantilever Beam
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The functional for the tip deflection and the function G are given as

T(E)8(E-1) ALAAdE (48)

<
"

1 -
joji (AL)

(AL Tw(e)se-1); G .- (an) s (e-1) (49)

’

(]
]

The primary and adjoint structure solutions are given

3 3.2
_PLT . _ PL7E -
LT (1-g); w(g) = o (3-8) (50)
3 3,2
a _ LT i gy, a L8 ol
W,EE = 5 (1-£); w () = I (3-¢) (51)

The sensitivity formula of Eq. (37) is reduced to
5y = féj_ (-e%5¢ - o8e® - %8 + 3G)ALdAdE
A
+ féI_ (‘oea + G)S(AL) dﬂdg (52)
A

The following quantities are needed to complete integrations in Eq. (52):

-2 a a -2 = N - -1
€ = cw’gghL ; € = ;w’gghL ;7 8G = w8(E-1)8(AL)
o = Ee; 8¢ = e8E; o2 = Ee?
= - -2 g.a _ a =< -2
de = Cw,gg (hL ), Se CW,EE (hL ]

Substituting these quantities in Eq. (52) and carrying out the integrations we get
the sensitivity expression given in Eq. (47). It is interesting to again note that
the adjoint displacement field given in Eq. (51) represents the sensitivity of the
primary displacement field (Eq. 52) with respect to the 1load parameters P; i.e,

WB(g) = dy/dp.

Example 3. Materially Nonlinear Problem

Consider the bar of Fig. 3 subjected to a load P in the x direction at the free

end. The material for the bar obeys a nonlinear stress-strain law ¢ = Ee1/2(e>0);

S0 ¢ = 381/2, We will consider E, A and L as design variables and determine sensi-

tivity of the tip deflection. Transformation to the reference volume gives x = LE,

a =AA, J = AL, V = AL, and V = 1, Nonlinear analysis of the primary structure
yields:
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2 _ 2, _ 2, _ 2
u(g) = 355%; su(L) = - gg_% 5E - g%_% 5A + g 5 &L (53)
ATE A'E A-E ATE
The functional for sensitivity analysis is given as
P = f;jKA_1L_1u(E)6(§—1)(AL)deg (51)
-1. -1 " -1.-1%
G=A L u(g)s(g-1); G g - AL oslem) (55)

The adjoint structure is linear with the stress-strain law as

2
a a _ | EE1/2Ea B gg 2 (56)

The equilibrium equation for the adjoint structure gives

u (g) = > 5 U, = 5> (57)

The sensitivity formula of Eq. (37) reduces to

sv = JSJK(‘EaS¢ - ¢%8e - o8e® + §G)JdAdE

+ féji(-cea + G)SJdadg (58)

Various quantities for Eq. (58) are

2 ~ —
e=u L - EEEE; L A 3235, 5G = us(E-1)5(AL) |
!g A E !g A E
g = Ee1/2; ¢ e = (1/2)Ee_1/2, 3¢ = 51/26E; oa = ¢ eea
z oL -2 = a -2 a
8¢ = u _S6L = =L "u _8L; § = -L "u 8L
JE JE ¢ JE

Substituting these quantities into Eq. (58), we obtain the sensitivity formula of
Eq. (53). It is interesting to observe sensitivity meaning of the adjoint displace-

ment field in Eq. (57); i.e. u>(£) = dy/dP.
Example 4. Geometrically Nonlinear Problem

Consider the two bar structure shown in Fig. 5. The material for the structure
is linear, so ¢ = Eg. Transformation to the reference volume is shown in the
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figure. The design variables for the problem are b = (E,A,L). The strain for the
problem is given as

be = ("L - %)% 2 % WL = ¢ (59)

The deflection at the center and member strains are calculated as

P73, - > 1 2 p232
vz L R N VE o0
(EA) (EA)
The incremental equilibrium equation in terms of displacement at the center is
3EAw2L-36w = §P. The functional for sensitivity analysis is given as
1 =1 - =
v = [ anTlwe)s(e-1) aLdiag (61)
A
6= (A W(@sE-N; 6 = (AL Ts(e-1) (62)

The equilibrium equation for the adjoint structure (using the incremental equili-
brium equation of the primary structure) is given as

32 a

3EAL "W w 1

1]
]

i 12 -
IOIE(AL) 6 (£-1)ALdAdE

3
a L L
W = = (63)
3EAw2 3E1/3A1/3P2/3

Total axial displacement and displacement at any point are given as

ud(L) = wising = wil™ 'y ud(e) = Wi e (64)
P
0] ]
L l LLELA
41 o) r?—»x % w > ¢
::<7:~\ 0 w ”",4' ‘I1/
Z \\\\ ///
~Fo P/2
x=L
~x=lE - J=AL
a=AA

Figure 5. Two Member Structure




The adjoint strains are given as

e? = wawL.—2 = EaL_Z, 2 = wiw (65)

The sensitivity formula of Eq. (37) reduces to

Sw = ZIAI_(—€a5¢ - oage - ogsa + EG)Jdeg
A

+ ZI;IK(-oea + G)3JdAdE (66)

Note that factor of 2 is used because volume integrals in Eq. (37) are for the
entire structure. Various quantities for Eq. (66) are

< =2

56 = e6E; 8e = e6L 2 = -wL OsL; §e = £36L72 = -2wwlL sl

¢ = Ee = %EWZL_Z; 6® = Ee? = EwwlL™%; §J = LA + ASL (67)

Substituting these quantities into Eq. (66), we get

_ /3 1/3
g = - ——— Lk 5 - P L

- 1/3<
§A + (P/EA) SL (68)
3EH/3A1/3 3E1/3Au/3

which can also be obtained directly from Eq. (60). Comparing w and w2 in Eqs. (60)

and (63), we again observe the sensitivity interpretation of the adjoint displace-
ment field.

Next, consider the member stress given in Eq. (67) as ¢ = (P2/3E1/3)/(2A2/3).
Its design sensitivity is given as

2/3  _ p2/3.1/3 _

SE - SA+(0) 8L (69)
32573

P
273,273

o
Q
1

6E
The functional for design sensitivity analysis is given as

1

Y = féJK(AL)- o AL dAdE = f;IKG(U)AL dh dt (70)

The adjoint load G,, in this case is zero but initial strain in the adjoint

1 a a ai
-g )

structure and stress strain law are given as et = ¢ 6 - (AL) ', ¢° = E(e

?
The adjoint equilibrium equation in terms of central displacement gives wl =
(wA)-1L/3 and €2 = wwaL-2 = (AL)-1/3. Substituting appropriate quantities in Eq.

(37), it can be verified that Eq. (69) is obtained. It can be also directly
verified that w® = dy/dP = dg/dP.
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7. CONCLUDING REMARKS

A general formula for design sensitivity analysis of 1linear and nonlinear
structures using variational approach has been developed. Equations of continuum
mechanics are used and the concepts of reference volume and adjoint structure are
exploited. Use of the formula is demonstrated on a few simple analytical problems,
The theory can be easily adapted for finite element modelling of structures. The
finite element models for the primary and adjoint structures can be independent of
each other. For modelling of design optimization problems, the concept of a refer-
ence volume is translated to the concept of a design element that is invariant with
respect to design changes. These observations can have considerable implications in
numerical implementations for design sensitivity analysis and optimization of
complex structures.

Considerable numerical work has been done for design sensitivity analysis and

1

optimization of linear structures. Material derivative approach has been exploited

for shape optimization. 1In this regard recent work of Choi and Co—workers,23 Yang

and Co-workerszu and Hou and Co—worker325 is significant. Yang and Co—workerszu
have shown equivalence of variational and finite element formulations of design
sensitivity analysis of shape problems for linear structures. This equivalence can

also be shown for nonlinear problems. Hou and Co—workers25 have discussed some
difficulties with the material derivative approach of design sensitivity analysis of
linear shape problems. They have suggested numerical procedures to improve accuracy
of the approach.

Design sensitivity analysis and optimization with nonlinear response is just
beginning to be studied. Finite element approach for nonlinear stresses, strains,

displacements and the buckling load has been recently studied.26—32. More research
needs to be done to fully develop this area.
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ABSTRACT

In this paper, a close link is established between open loop optimal
control theory and optimal design by noting certain similarities in the gradient
calculations. The resulting benefits include a unified approach, together with
physical insights in design sensitivity analysis, and an efficient approach for
simultaneous optimal control and design. Both matrix displacement and matrix
force methods are considered, and results are presented for dynamic systems,
structures, and elasticity problems.

1. INTRODUCTION

Considerable interest is being shown in recent years on control of flexible
systems such as robots and space structures. In control theory and optimal
control in particular, the geometry (dimensions and shape) is given, and the
task is to develop a control law so as to ensure proper operation of the system
in an uncertain environment. 1In design, and optimal design in particular, the
task is to determine the geometry. Evidently, at least in the preliminary
design stages, there is interaction between optimal control and optimal design.
There is a need for better understanding of this interaction. 1In this paper, a
close link is established between these two disciplines. Specifically, the
similarity of the sensitivity calculations and adjoint equations is examined.
Practical benefits and new possibilities are discussed. Dynamic systems,
structures, and continuum elasticity models are considered. Both displacement
and matrix force methods of structural analysis are treated.

2. THE LAGRANGE MULTIPLIER RULE FOR CALCULATING SENSITIVITY COEFFICIENTS

The Lagrange multiplier rule is a well-known method for obtaining
optimality conditions in the presence of constraints. The rule, however, serves
equally well in obtaining expressions for sensitivity coefficients (or
derivatives) of implicit functions, as shown below.

Consider the scalar valued function f = f (x,b), where x is an (nx1)

vector of 'state' variables and b is a (kx1) vector of design variables. The
function f is implicit in that for every vector b, x satisfies the state
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equation
g (x, ) =0 (1)

where g is (nx1) vector function. It is desired to obtain the sensitivity
vector~df/dp. In design of structural and mechanical systems, f often
represents the stress or displacement of a point and Eq. (1) is the equation
of equilibrium. To illustrate the Lagrange multiplier rule for calculating
df/db, we first form the scalar valued function H as

H=rf+ \Tg (2)
where ) is an (nx1) vector of Lagrange multipliers or 'adjoint' variables.
Noting that f, g and H are functions of x and b, we have, upon differentiating
H with respect to Q,

dH/db = BH/db + B3H/dx  dx/db (3)

The idea behind the Lagrange multiplier rule is to require that A satisfy the
equations

8H/9x = 0 (W)
Assuming that Bg/ax is a nonsingular matrix -- which is necessary for x to be
a unique solution to Eq. (1) -- and using Eq. (4), we can obtain A from the
following 'adjoint equations':
[0g/8x1T A = - ar/axT (5)

Equation (3) now provides the result

df/db = 3H/db (6)

or,
df/db = 3f/3b + AT 3g/dp. (7
In Eq. (7), the term gT d)A/3b does not appear because of Eq. (1.

The fact that the Lagrange multiplier rule offers a unified approach to
design sensitivity analysis has been discussed in Ref. 1. Further, the adjoint
method of design sensitivity analysis given in Ref. 2 results in the exact same
equations as obtained using the Lagrange multiplier rule. In this paper, the
use of this rule to obtain expressions for sensitivity coefficients helps to

establish a close link between optimal design and optimal control, as discussed
in the next section.




3. OPTIMAL CONTROL AND OPTIMAL DESIGN

Optimal Control

To present the basic concepts, consider a dynamic system described by the
following nonlinear differential equations

X

g (x(t), u(t), t); x(t ) given, t_ st < te (8)

where the 'state' x(t), an (nx1) vector function, is determined by the
‘control' u(t), a (kx1) vector function. Consider a performance index given by
the scalar_ functional

ﬂtf
- J T, ), 0 a (9)
0

The optimal control problem is to find u(t) that minimizes (or maximizes) F

[3]. The Lagrange multiplier rule as discussed in the previous section, is used
to do this. Adjoin the system in Eq. (8) to F with multiplier functions (or
adjoint variables) A(t):

“—tjf [f + A (g - x)] dt (10)

If we define the scalar function H, the Hamiltonian, as
H=rf +1T g (11)

and integrate the last term on the right side of Eq. (10) by parts, we obtain

T T
F=-d () x (b)) + 40 (£) x (t)

T
tff [H+X x]dt (12)
e}

Now, consider the variation in F due to variation in the control vector
u(t) for fixed times t, and ty and fixed initial conditions,

_ T T 0 tf' .T
§ F=-1" 8x L + A § x L + ‘/- (3H/3x + A ) 8x dt
=t =

£
oH
. f = dudt 7 (13)
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Since it is tedious to determine the variations 6§(t) produced by a given
du(t), we choose the multiplier functions A(t) to satisfy

XT——EE=-3§->\T—8g (14)
T X X  ~ 3
with boundary conditions
AT (tp) =0 (15)
In view of the adjoint equations in (14) and (15), Eq. (13) yields
t
§F = tj f BH/3u  8u dt (16)

o)

The functions 3H/3u can be interpreted as impulse response functions since
each component of 5H/au represents the variation in F due to a unit impulse in
the corresponding component of u at time t [3]. Furthermore, 9oH/9u can be
interpreted as the functlon—space gradient of F with respect to u. This last
interpretation is useful when using gradient methods to extremize F. For
example, choosing g(t) = -a OH/9u corresponds to a steepest descent step to
minimize F.

Finally, it should be noted that setting 8H/ou = 0 yields the optimality
conditions. In the special case when F is quadratic in x and u and Egs. (8)
are linear, the optimality conditions together with the state equatlons (8) and
adjoint equations (14) and (15) can be solved in closed form, leading to the
Ricatti equations, which are very attractive in closed loop control since the
feedback law is independent of the state vector x and can be computed roff-
line'.

Optimal Design

In optimal design of mechanical systems, it is required to obtain the
sensitivity vector dF/db where F is a cost or constraint functional of the
form

t

f
F = / f(x(t), b, t) dt 17)

t
o]

with b a (kx1) vector of design variables. For example, F represents a time-
averaged performance measure of a vehicle traversing a rough terrain. Most
gradient~based nonlinear programming codes require input of the vector




dF/db. 1In Eq. (17), for a given b, x should satisfy the equations of motion
given by

tX e

= q (x(t), b, t); x(to) given, to £t < tf (18)

As before, the use of the Lagrange multiplier rule requires the function
t

- f T .

F = / [f+) (g-x)]dt (19)
t
0

Integrating the last term on the right side of Eq. (19) by parts yields

= T T
Fo= -2 (e x(ep) + 276 ) x(t)

t T
+ t_/’ R A ox] dt (20)
o

where H is defined in Eq. (11). Now, consider the variation in F due to
variations (or differentials) in b for fixed times t, and tg, and fixed
initial conditions:

0 t
= T T f T
$F=-21 & L A8 L + J/ (3H/3x + X ) 6x dt
f o) to
tf
* j- dH/3b &b dt (21)
o

If we choose A(t) to satisfy the same adjoint equations as in the optimal
control problem in (14) and (15), we obtain

ttf
§F = tJ/ dH/9b &b dt (22)
o}

Since b is not a function of time, Eq. (22) yields the sensitivity coeffi-
cient vector
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t
f
aF/db = toj' 3H/3b dt (23)

Expressions as in Eq. (23) can then be fed into nonlinear programming codes to
obtain improved design vectors b. The main emphasis here, however, is to

show that the calculation of design sensitivity vectors is simply a special case
of open loop optimal control. That is, treating the control variables u(t) as
design variables enables us to obtain expressions for the sensitivity vectors.

The following advantages result from this observation:

(1) A general approach to design sensitivity analysis is
established.

(2) Physical significance of the adjoint variables is established. In
particular, in the above discussion, the functions dH/9%u are
interpreted to be influence functions. The importance of such a
physical interpretation in structural design is discussed
subsequently.

(3) The fact that the adjoint equations are the same in the optimal
control and optimal design problems motivates an efficient gradient
approach for simultaneous handling of control variables and design
parameters. That is, functionals of the form

t
F - toj’ Fr (x(t), u(t), b, ) (24)

where both control variables u(t) and design parameters b have to be opti-
mally chosen, can be treated efficiently. Such problems may arise, for example,
when designing both a control law as well as determining the dimensions and
shape for a robot or for a flexible space structure.

4, STRUCTURES

Matrix Displacement Method

The general results discussed in the preceding section lead to special
insights when applied to structural systems. Consider a scalar function

f=f (x, D) (25)

where f typically represents the stress or displacement at some point in the
structure, b is a (kx1) vector of design variables, and x is the nodal
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displacement vector. If a finite element model of the structure exists, then
the (nx1) vector x is obtained from the matrix displacement (finite element)
equations

K(b)x = P(b) (26)

where K is an (nxn) structural stiffness matrix and P is a vector of applied
nodal loads.

The importance of applying optimal control concepts to structural systems
described by (25) and (26) will now be shown., The sensitivity vector
df/db will be obtained by using the Lagrange multiplier rule. Define the
function H as

H=1f +)T (P ~Kx) (27)

where A is the (nx1) adjoint vector. The variation of H due to a variation in
b is glven by

SH

dH/3b &b + JH/3X 8X (28)
Choosing A to satisfy
oH/3x = 0 (29)
which can also be written as K A = af/agT, we have from Eq. (28),
8f = dH/3b &b (30)
which yields
df/db = 3H/3b (31)
Now, in the foregoing analysis, let us consider the variation in H due to a
variation in P. That is, we consider variations in the 'control' vector
P instead of the design vector b. We have
§H = QH/3P &P + BH/3x 68X (32)

Choosing A to satisfy the adjoint equation in (29), and noting that f and K
do not depend explicitly on P for linear structures, we get

sf

AT sp (33)
or,

AT

df /dp (34)

Since the adjoint equations in (29) are the same regardless of whether the
fundamental variation is in b or P, Eq. (34) shows that the adjoint vector
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A used in structural design sensitivity analysis represents the sensitivity

of the function f to variations in the applied loads P. Further, if f is

linear in P, then Aj = value of f due to Py = 1. In civil engineering, A is the
influence coefficient vector associated with the function f, as discussed in
Ref. 4. Further, since Eqs. (29) can be written as

K A = 3f/9xT (35)

we can think of A as a displacement vector associated with the load vector
of /9x. This motivates the use of element shape functions to obtain expres-
sions for A within the elements from knowing the nodal values. Thus, we can
write

A(E) = g M Ni(g) (36)

where Aj are the nodal values obtained by solving Eq. (35) and Nj are the
familiar shape functions used in finite element analysis.

The beam in Fig. 1(a) is solved to illustrate this. A finite element model
of the beam is shown in Fig. 1(b). The function f is taken to be the moment at
support b. The adjoint vector A, representing the values of f due to unit
loads along each degree of freedom, is obtained by solving Eq. (35). Equation
(36) is used to obtain expressions for A along the beam, which is used to draw
the influence line as shown in Fig. 1(c). The results are in agreement with
those in Ref. 5, and show that the adjoint method is a new and powerful approach
for determining influence lines.

Some other interesting aspects relating to Egqs. (34) and (35) may now be
noted. If we let f be the strain energy function U given by

U== X IS (37)

[

then Eq. (35) yields K A = K x, from which )

1

X. Equation (34) then yields

x' = du/dp (38)

which is a discrete version of Castiglaiano's theorem for linear structures.

Also, letting f = 1 xT K x - xT F = potential energy, results in A = 0 and dn/dP

= 0, which is a statement of the minimum potential energy theorem,

Matrix Force Method

The systematic use of the Lagrange multiplier rule or adjoint method for
design sensitivity analysis and physical significance of adjoint variables,
which was discussed in the context of displacement finite element analysis, will
now be extended to structures analyzed by the the matrix force method.




For indeterminate structures, the equilibrium equations in the matrix force
method take the form [6]

n.E+n X-P (39)

where x is a vector of 'redundant' or independent forces (and reactions),

F is a “vector of dependent forces, and P is the vector of externally applied
forces. The redundants X are obtained from compatibility conditions of the
form

X = C(b) P + d(b) (k0)

Consider now a function f (b F, X) Note that matrices C and d also depend
on the design vector b. Form the function H as

-’ -~ -..(E—QFE—E)(X)

Consider the variation in H due to a variation in b:

T

8H = 3f/d9b &b + (3f/JF - A nF) SF
+ (0/3% - A n+ Ty sx - T (scep v sd)  (k2)
Choosing A to satisfy
ng A = 3f/3F (43)
and letting
ul = AT ny - 3£/0X (Lk)
we have
= 9f/3b §b ~ uT (§C+p + &d) (45)
from which the sensitivity vector is obtained as
df/db = 3£/3b - 4 3/3b (C P + d) (46)

-~

The physical significance of the adjoint variables A and u is obtained in the
usual manner by considering the variation of H in Eq. (41), due to a variation
6P is P. Upon defining A as in Eq. (L43) and p as in Eq. (4k), we get
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st = WT - yT c) sp (L7)
Thus, (A - cT y) is now the influence coefficient vector.

For statically determinate structures, the terms ny, X and yp vanish, and
Eq. {47) becomes

st = AT sp (48)

which is analogous to Eg. (33) that was obtained in the displacement method of
analysis. 1In this case, Aj = value of f due to Pjy = 1, provided f is linear and
homogeneous in P.

5. ELASTICITY

This section will focus on elasticity problems. Consider a functional

F= [ £ (o..) dn (49)
o,

where 0ij is the stress tensor, Q@ is the domain of the elastic body, and the
equilibrium equations in variational form are

ngij (W) e;; (o) da = IJ¢1 T, dT + Qj¢i B, dn (50)

Equation (50) is satisfied for every displacement field ¢ satisfying $; = 0 on
'y, u is the actual displacement field due to traction forces T; and body forces
Bi, and kinematic boundary conditions u = 0 is imposed on a portion Iy of the
total boundary. Equation (50) is simply the principle of virtual work, with

€13 (¢) being the virtual strain due to a kinematically admissible virtual
displacement ¢. As before, form the functional H as

H = j[f(oij) - oij(u) eij(x)] dq + _fxi T, dr + ‘[Ai B, da (51)
Q r Q
where ) satisfies A = 0 on Tq. Consider a variation &T; in Ty, and 6Bj in Bj,

and let o¢j4(v) and fij(v) be the corresponding variations in stress and strain,
respectively. The variation in H is given by

6H = j [o0f/30,, o,, (V) - o,, (v) g,, (A)] dQ
Q ij ij ij ij

* J A, 8T, dr + j A, 6B, dq (52)
T 1 1 Q 1 1
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Equation (52) holds true for all kinematically admissible A, and consequently
holds true for a A determined from the following adjoint equations:

_/:c)f/aoij oij (y) d@ (53)

j’oij (\) e, (¥) dg Q

Q =

which is satisfied for all ¥, ¥ = O on T',. Since

QJOij (1) €3 (¥) de Q-["ij (¥) €5 (}) de

putting ¥ = v in Eq. (53), Eq. (52) yields

6F = rj)‘i §T, + Q_{)\i 8B, dq (5kh)

Equation (54) is essentially a variational principle. If we let the functional
F be the complementary strain energy density, that is, we let

: ~0. .
_ 1]
F - Qf [Oj e,y dog1 do (55)

then Eq. (54) yields (upon using Leibnitz's rule)

je.. §o.. dQ = fx. §T, dI + fx. §B, d@ (56)
) 1) 1] T 1 1 Q 1 1

which is the principle of complementary virtual work [7]. Finally, sensitivity
expressions can be readily obtained if variation of H due to design variations
is considered as done in previous sections. This approach holds true for

a changing domain, as in shape optimal design [1]. From Eq. (5k4), we can see
that Aj at a point represents the value of F due to a unit load at that point.
This fact can be written in terms of Green's function as

A = fo (oij (G;)) dn (57)

where the Green's function G is the displacement field due to a unit load.

6. FUTURE WORK

In both optimal control and optimal design, it is shown that the
Hamiltonian function and the Lagrange multiplier rule play a similar role.
Optimal control theory helps to obtain a unified framework for design
sensitivity analysis and physical understanding of adjoint variables. Some
areas which may merit future investigation are noted below.
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1. This work motivates an efficient gradient approach for optimal design
of systems with control in mind. That is, both control variables and
geometric design parameters can be considered simultaneously in the
preliminary design stages.

2. In structures, the adjoint method provides a powerful method for
constructing influence lines in the framework of finite element
analysis. Also, the equation 2T = df/dP can be used to design
structures which are insensitive to loads Pj by minimizing A2i, or can
be used to optimally locate the loads for maximum utilization of the
structure, by maximizing ATE subject to suitable constraints.

3. The stability analysis of the adjoint equations that has been carried
out extensively in optimal control theory may turn out to be of
importance to the design engineer.
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Figure 1. (a) Beam Problem,
(b) Finite Element Model of Beam,
(c) Influence Line for Moment at Support b of Beam
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ABSTRACT

Design sensitivity analysis for composites will soon be available in
MSC/NASTRAN. The design variables for composites can be lamina thicknesses,
orientation angles, material properties or a combination of all three. With
the increasing use of composites in aerospace and automotive industries, this
general capability can be used in its own right for carrying out sensitivity
analysis of complicated real-life structures.

As part of a research effort, the sensitivity analysis has been coupled
with a general-purpose optimizer. This preliminary version of the optimizer
is capable of dealing with minimum weight structural design with a rather
general design variable linking capability at the element level or system
Tevel. Only sizing type of design variables (i.e., lamina thicknesses) can be
handled by the optimizer.

Test cases have been run and validated by comparison with independent
finite element packages. The linking of design sensitivity capability for
composites in MSC/NASTRAN with an optimizer would give designers a powerful
automated tool to carry out practical optimization design of real-life
complicated composite structures.
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INTRODUCTION

The purpose of this paper is to present the considerations and the
resultant approach used to implement design sensitivity capability for
composites into MSC/NASTRAN. MSC/NASTRAN 1is a large-scale, general-purpose
computer program which solves a wide variety of engineering problems by the
finite-element method. In addition, as part of a research effort, MSC/NASTRAN
has been coupled with a general-purpose optimizer CONLIN to optimize composite

structures with sizing type variables.
The following sections will cover:
e The analysis of laminated composites in MSC/NASTRAN

e Theory for design sensitivity analysis for composites

e The program architecture and considerations that go into implementing
such a capability into a large-scale general-purpose computer program

@ Basic optimization concepts and a brief description of the optimizer
CONLIN used for this study

o Numerical studies to validate the results

THE ANALYSIS OF LAMINATED COMPOSITE MATERIALS IN MSC/NASTRAN

Laminated composites may be conceptually viewed as a "stack" of laminae
with different orientations of the principal material directions in the
individual lamina. An exploded view of three cross-ply laminated plates is
illustrated in Figure 1. The n-laminae (n = 2,3,4) of each of the three
configurations are normal to the z-axis of the indicated coordinate system and
the 1- and 2-axes appended to the individual lamina denote principal material
axis directions. The directions of the principal material axes of each lamina
alternate as implied by the use of the word "cross-ply" to describe the
configuration. The xy-plane of the coordinate axes is defined in the
geometric middle plane of the laminae.

An entire "stack" of laminae may be modeled with a single plate or shell
element because the material properties of the "“stack" are completely
reflected in the matrices of elastic moduli for the element. These matrices
are automatically calculated in MSC/NASTRAN from user-supplied definitions of
the thickness, the material properties, and the relative orientation of these
properties for the individual lamina. Once these matrices of elastic moduli
are calculated, the analysis proceeds in a standard manner. This capability
for the automatic representation of laminated composites is available in
linear static analysis, real and complex eigenvalue analysis, buckling
analysis, geometric nonlinear analysis, and a dynamic analysis [11.




In the analysis of isotropic materials, strength is independent of the
orientation of the body under load and one may compare the largest computed
principal stress with an allowable stress to establish the integrity of the
structure. Laminated composites, on the other hand, are orthotropic materials
and may exhibit unequal properties in tension and compression. Thus, the
strengths of these orthotropic laminae are a function of body orientation
relative to the imposed stresses.

As the evaluation of the matrices of material moduli for laminated
composites provides sufficient information to determine the actual stress
field sustained by the material, the determination of structural integrity
will depend on the definition of an allowable stress field. The basic
ingredient of this definition is the establishment of a set of allowable
stresses or strengths in the principal material directions.

Xy = Allowable tensile stress in the principal x(or 1)-direction of
the material

Xc = Allowable compressive stress in the principal x(or 1)-direction
of the material

Yy = Allowable tensile stress in the principal y(or 2)-direction of
the material

Yo = Allowable compressive stress in the principal y(or 2)-direction
of the material

S = Allowable shear stress in the principal material system

Failure index of an element is a measure designed to test whether the
state of stress in the worst-stressed lamina is within or outside the lamina's
failure envelope.

In addition, the interlaminar shear stress will be checked against the
allowable bonding stress (Sy) specified by the user.

The failure index for the laminate is the larger of the two values so
obtained. Three failure criteria are available in MSC/NASTRAN. They are
Hi1l, Hoffman and Tsai-wu. In this paper Hill's failure criterion will be
used, 1.e., 2

g 02 g0 02
1 2 172 12

+ - + = 1
Xy X2 52

>
]

Xe if 9 is tensile
Xe if 9 is compressive

Y=Y, if 9 is tensile
Yo If 9 1s compressive

For the product term, X = Xy if 9 and g, are of the same sign; X

"
><
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otherwise. Basically the equation represents a failure envelope in the stress
space (figure 2).

If the state of stress in the orthotropic lamina (o,, o,, 0,,) is such

that the stress point is within or on the envelope, the lamina is said to be
“safe"; if the point is outside, the lamina is said to have “failed".

DESIGN SENSITIVITY CAPABILITY FOR COMPOSITES IN MSC/NASTRAN

Design sensitivity analysis for composites will soon be available in
MSC/NASTRAN. The design variable for composites can be lamina thicknesses,
orientation angles, material properties, or a combination of all three. With
the increasing use of composites in aerospace and automotive industries, this
general capability can be used in its own right for carrying out sensitivity
analysis of complicated real-1ife structures.

Design sensitivity analysis estimates the effects of interrelated design
variables such as element properties and materials on the structural response
quantities, such as displacement, stress, natural frequency, buckling loads,
and for composites lamina stresses and failure indices. Design sensitivity
coefficients are defined as the gradients of the design constraints with
respect to the design variables at the current design point. The method
chosen for incorporation into MSC/NASTRAN is called the Pseudo load technique,
based on a first variation (finite-difference scheme) of the systems
equilibrium equations with respect to the design variables.

Let w ) be a set of design constraints which are functions of bj

design var1abies and displacements Ug- The design constraints are expressed
as

wi(bj, ug) <0

The first variation in ¥ is given as

3wi 3wi
oYy = [35'5] {sbs} + [m] {sug}
j u=-fixed jx1 ixn b-fixed nxl
consider ug as a function of bj, then
au
= [35?] {sb
nxj Jjx1
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Thus

lovg) = (g + Lggillgsdl) tovy)

J r
or
6‘P1 Aw.' 34‘1 3W1 ou
= = [55-] * 155%]
sbj Abj §bj aug 55?

au
The matrix-355 can be evaluated by taking the first variation of the
J

systems equilibrium equation

or
[glaugh + [akg}ug} = {aP |
or
(augh = (kg1 ™ ({aPg} - [akg]{ugh)
or

[aug] = [kgI™ (1apg(8b))}, {aPg(aby)}, .., {8P (ab)})
- [k ([akgleby)]{ug}, [akg(aby))ugh,..[ky(ab)}ug})
The elements of L;;i] matrix for an element constraint, such as stress,

force, or a failure index, can be expressed by the relationship

or
[3¢1
aug

|
—
w
(-
-—bo
[T=]
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The design sensitivity coefficient matrices may thus be expressed as

by Y Bv,
(A4 = ({gb-l'}o {;;5;}, vees {'A—b;}) Ut o
, My - B, a4
[5191({35;—}-{35%}. e {35-3—}) ey o

From this equation it is easy to see that the number of additional case
control records (additional loading cases) required for design sensitivity
analysis is equal to the number of design variables for each subcase (Pseudo-
Load Technique).

A typical term of the coefficient matrix may thus be written as

. (SB+AB uB _ SBuB) . (SBuB + AB i SBuB)
1§ AB AB AB AB

where B represents the base line or original state and B + AB represents the
perturbed state. The first expression in parentheses on the right-hand side
is thus the change in response quantity due to a change in design variable for
the original solution vector. The second term represents the change in
response quantity due to a change in displacement for the unperturbed design
variable. For displacement constraints, the first term in parentheses on the
right-hand side is identically zero.

The design constraints for composites can be lamina stresses or failure
indices, displacements, frequency, buckling loads, or forces. The design
variables can be lamina thicknesses, orientation angles or material
properties.

PROGRAM ARCHITECTURE

In order to understand the reasons behind how a development is introduced
into a large finite-element program, a knowledge of the program architecture
and technical purpose is necessary. A brief description of MSC/NASTRAN is
presented as background.

The cornerstone of MSC/NASTRAN's architecture is its Executive System,
whose essential functions are to establish and control and sequence of
calculations, to allocate files, and to maintain a restart capability.
Engineering calculations are performed by approximately 200 functional modules
which communicate only with the Executive System and not with each other.
Flexibility is maintained by a macro-instruction language called DMAP, which
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is under user control, but which also serves to establish preformatted calcu-

Tation sequences for the major types of analysis, including linear analysis,
buckling, vibration mode analysis, and design sensitivity.

The calculation of finite element data is concentrated exclusively in a
few modules. The element matrices for stiffness, structural damping, and
differential stiffness for elements of the structural model are generated in
the Element Matrix Generator (EMG) module. These element matrices are
subsequently assembled to form the elastic stiffness matrix, the structural
damping matrix, the mass matrix, or the differential stiffness matrix.

The element contribution to the load vector is generated in the S$SG1
module and the element stress and force are generated in the SDR2 module. In
all these modules, the finite element descriptions are defined in the Element
Summary Table, the EST table. The EST table contains the element connection,
material property and sectional property information.

Taking advantage of the table-driven concept used by the element modules,
much of the element dependent development could be avoided in implementing
design sensitivity if a procedure could be developed which would involve only

building EST tables that would cause existing modules to form the necessary
element data.

How a given capability is introduced into a commercial general-purpose
finite-element program is as important an issue to the user as its theoretical
sophistication. If the user views a capability as hard to use, as having an
insufficient capacity to solve his problem, or taking an inordinate time to
comprehend its output, the product is of little practical use. 1In addition,
the program developer, while heeding the user's needs, has to keep sight of
the program as a whole when adding new capabilities. This involves
interfacing well with existing capabilities, maintaining program reliability

and generality, and producing software that makes effective use of computer
resources.

The user interface is a major consideration in the design of a new
capability. The following issues were considered in DSA:

1. DSA input should be straightforward, but allow flexibility to model
complex structural design concepts

2. DSA output should be concise and easily understood

3. Avoid arbitrary program 1imits which restrict the allowable element
types, constraint quantities, and problem size

4. Provide an interface for external optimization postprocessors
A brief discussion of the processes involved in a typical DSA STATIC

analysis in MSC/NASTRAN will help bring into perspective the work involved in
the various parts of the DSA solution.
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DSA in a STATICS analysis is based on solving for {Aau_} in the first-
order variation of the nodal equilibrium equation: 9

[Kggltaug} = {aPg} = [BKggl{ug]

The DSA problem in the paper is considered to be the additional task
required after the solution of primary analysis. By restarting from the
primary STATIC analysis, the solution of the DSA system equation only involves
the calculation of the right-hand side and the backward pass operation in the
solution of Au.

The work involved in solving the system equations (backward pass
operation) is a function of the product of the number of design variables and
loading conditions. The following DSA tasks are required in addition to
solving the system equations:

1. DSA Data Organization
2. DSA Data Assembly
3. DSA Data Recovery

These tasks are functions of the triple product of the number of design
variables, design constraints and loading conditions. For large DSA problems,
the data organization, assembly and recovery tasks are the dominant users of
computer resources.

Another major consideration was to support all structural finite-element
types in MSC/NASTRAN. Since a large number of the elements developed are
semiempirical, the determination of consistent element derivative formulations
cannot be practically accomplished. Therefore, a method was developed to
calculate element derivatives by a differencing scheme about the current
design point. This method involved the calculation of the element matrix at
the design point plus or minus the user-specified design variable increment.
These element data are differenced with the data at the design point to
determine the corresponding element derivatives. For example, the following
shows the change in element stiffness due to a change in the design variable.

[8gql = [Kgg 4 apl - [gg!

Another benefit of differencing about the design point is that it avoids
most potential numerical problems. This is because the evaluation of the
perturbated element data is computed near a design point which has already
been determined to be numerically acceptable in the primary analysis.

To get an idea of the magnitude of the task involved, about 15 existing
subroutines comprising approximately 6000 lines of Fortran had to be modified,
in addition to coding approximately 10 new subroutines comprising 1000 lines
of Fortran. There are approximately 15 tables created for data organization
and manipulation.




An initial analysis is carried out to identify critical constrains and a
data base created. In the succeeding run, information about constraints,
design variables, and maximum and minimum side constraints is supplied. A
special DMAP package was created which exploits the data base technology.

The user can control the number of iterations performed. He can restart
from the previous step. This is especially convenient, as he can scan the
output and intervene manually to either add or delete constraints or modify
design variables. Table 1 gives a schematic diagram of the program flow.

OPTIMIZATION CONCEPTS AND CONVEX LINEARIZATION

In order to validate the new design sensitivity capability for composite
structures, it was decided to introduce a numerical optimization module in a
special version of MSC/NASTRAN. It has then become possible to solve some
well-documented structural optimization problems, and to compare the results
with those produced by other finite-element systems having similar sensitivity
and optimization capabilities. In our opinion this pilot implementation
represents the most complete and reliable way of verifying that the
sensitivity analysis results are correct and accurate enough for a meaningful
exploitation. It should however be mentioned that only sizing types of design
variables (i.e., lamina thicknesses) are permitted in our optimization
module. This is because no proper formulation is currently available to deal
with optimization problems involving other types of design variables (e.g.,
orientation angles and material properties).

Structural optimization methods using finite-element models have now
reached a high level of reliability and efficiency. These methods can
currently address practical problems involving various types of design
variables (e.g., component transverse sizes, shape variables) and design
constraints (e.g., geometry requirements, maximum allowable stresses, bounds
on deflections, or frequencies). In addition the types of finite-element
models tractable by these methods have recently been largely extended so that
virtually all finite-element models that can be analyzed can now be addressed
by optimization techniques (e.g., bar, beam, membrane, plate, and shell).

A numerical optimization problem is characterized by a given objective
function f(x), which is to be minimized by determining the magnitudes of
design variables x, such that certain constraints on the xi's are achieved.
This leads to a mathematical programming problem of the "primal" form:

minimize f(x)
such that hj(x) >0 j=1,2,...,m
X; > Xy 2 X5 §i=1,2,44.,N

where m is the number of behavior constraints and n, the number of design
variables.
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Such a problem can be solved iteratively by using numerical optimization
techniques. Each iteration begins with a complete analysis of the system
behavior in order to evaluate the objective function and constraint values
along with their sensitivities to changes in the design variables (i.e., first
derivatives). A design iteration is concluded by employing the results of
these behavioral and sensitivity analyses in a primal minimization algorithm
which searches the n-dimensional design space for a new primal point that
decreases f(x) while remaining feasible (i.e., satisfying the constraints
h;(x)).  Many such iterations are usually required before achieving the
optimum design. Until recently, because of the high-computation cost of each
iteration (full FEM analysis), structural optimization techniques based on
primal algorithms have been only conceivable on power mainframe computers.

An alternative to this primal formulation is the so-called "dual"
approach [2], in which the constrained primal minimization problem is replaced
by maximizing a quasi-unconstrained dual function depending only on the
Lagrangian multipliers associated with the behavior constraints. These
multipliers are the dual variables subject to simple non-negativity
constraints. The efficiency of this dual formulation is due to the fact that
maximization is performed in the dual space whose dimensionality is
relatively low and depends on the active constraint at each design
iteration. The dual approach is especially powerful when used in conjunction
with approximation concepts [3]. In particular, the convex linearization
scheme (CONLIN) [4], recently introduced to solve general structural
optimization problems, exhibits very good performance, even when dealing with
the inherently difficult problems involving changes in geometry.

In CONLIN each function defining the optimum design problem is linearized
with respect to appropriate intermediate variables (called "mixed" variables)
yielding a convex, separable problem approximation. The initial problem is
therefore transformed into a sequence of explicit subproblems having a simple
algebraic structure. The convex linearization scheme exhibits remarkable
properties that makes it attractive to replace the original primal subproblem
by its dual [2]. CONLIN can be viewed as a generalization of well-established
approaches to pure sizing structural optimization problems, namely
"approximation concepts" and "optimality criteria" techniques [5], and as such
it is capable of addressing a broader class of problems with considerable
facility of use.

Because of its many attractive features the CONLIN algorithm has been
selected to implement optimization capabilities in our pilot program. At each
successive iteration point, the CONLIN method only requires evaluation of the
objective and constraint functions and their first derivatives with respect to
the design variables. This information is provided by the FEM analysis and
sensitivity analysis results. The CONLIN optimizer will then select by itself
an appropriate approximation scheme on the basis of the sign of the
derivatives. CONLIN benefits from many interesting features.

* The CONLIN approach is very general, requiring only values and
derivatives of the functions describing the optimization problem to

be solved; it permits therefore straight interfacing to the FEM
software;




+ Because it is based on conservative approximation concepts, CONLIN
does not demand a high level of accuracy for the sensitivity analysis
results, which can therefore be obtained by finite differencing;

« CONLIN usually generates a nearly optimal design with less than 10
FEM analyses;

« CONLIN has an inherent tendency to produce a sequence of steadily
improving feasible designs;

« The CONLIN method is simple enough to lead to a relatively small
computer code, and well organized to avoid high core requirements.

These features have considerably facilitated the implementation of reliable
and efficient optimization capabilities in our special version of MSC/NASTRAN.

NUMERICAL EXAMPLES

Two example problems were chosen to validate the capability and to
highlight some of the salient features.

EXAMPLE 1 RECTANGULAR PLATE WITH A CIRCULAR HOLE.

A rectangular plate with a circular hole is subjected to a specified
displacement along the x-direction. The quarter model of the plate is shown
in Figure 3. The plate is modelled using QUADRILATERAL elements. Each
element consists of 4 laminae stacked at 0°, 45°, 90° and -45°, respectively.
The region near the hole is divided into 13 regions. The 0° lamina for each
of the 13 regions is treated as a single design variable. The laminae at 45°
and -45° are linked and are treated as a single design variable for each of
the 13 regions. Similarly the 90° lamina is treated as single design variable
for each of the 13 regions. Thus there are a total of 39 design variables for
this problem. The model consists of 288 QUADRILATERAL elements and 317 grids.

The design constraints are the failure indices using the Hill criterion
selected for different lamina in specified elements. The model was optimized
for these selected constraints. The results are shown in Table 2. The
results were examined after iteration 5 to examine if the failure index
exceeded 1 for any of the elements which were not specified as constraints
originally. The violated elements were input as constraints and the
optimization loop started from this point onward. The algorithm converged in
9 loops. As can be seen, the user can intervene at specific points in the
algorithm and monitor the progress. This capability is particularly important
and convenient for realistic design of structures.

EXAMPLE 2

The second demonstration problem is a delta wing structure with graphite/
epoxy skins and titanium webs subjected to pressure loading and temperature
loading. The wing is shown in Figure 4. The problem has been previously
studied for frequency constraint in Reference 3. The structure is symmetric

157



158

with respect to its middle surface which corresponds to the x-y plane in
Figure 4. The skins are assumed to be made up of 0°, +45° and 90° high
strength graphite/epoxy laminates. It is understood that orientation angles
are given with respect to the x reference co-ordinate in Figure 4, that is,
material oriented at 0° has fibers running spanwise while material at 90° has
fibers running chordwise. The skins are represented by QUADRILATERAL and
TRIANGULAR membrane elements and the webs are represented by shear panels.
According to the linking scheme depicted in Figure 5, it can be seen that the
total number of independent design variables is equal to 60 made up as
follows: 16 for 0° material, 16 for +45° material, 16 for 90° material and 12
for the web material. The model contains 56 QUADRILATERAL elements, 12
TRIANGULAR elements and 142 shear panels. The total number of nodes is 132.

The design constraint was the maximum deflection at the tipof the wingequal
to 10.0 in. The results are shown in Figure 6 for the objective function and
the tip deflection for the number of iterations.

After the Delta-wing was optimized for tip deflection of 10.00 in.,
parametric studies were carried out to study the effect of 4B on the response
quantity. The fundamental frequency was chosen as the constraint and ply-
angle chosen as the design variable. A1l the 0° laminae in the wing were
linked together, as were the 45°/-45° and 90° laminae. The value of AB was

vaied from 10.0 to 10~/ and the results are shown in Table 3. As can be seen
from Table 3, the sensitivity coefficients gradually converge till AB equal to
102 and then begin to diverge. Thus for AB less than 1072, round off errors

become significant enough to degrade the solution. The robustness of the
finite difference approach is, however, evident since even for AB as large as
0.1, the % error is only of the order of magnitude of 1%.

It was also decided to investigate the effect of linked design variables
on fundamental frequency as a constraint. The results are shown in Table 4,
where ply-thicknesses, orientation angles and Young's modulus along the
principal direction were chosen as the design variables. The sensitivity
analysis, by itself has little value unless used in an optimization context.

Table 5 gives the CPU times on the VAX-11/780 machine for the two example
problems. As can be seen, the optimizer itself takes very little time. Since
normally, 5 to 10 iterations are required for optimization, sensitivity
analysis and the reanalysis after updating the design variables constitute the
expensive portions of the design process. Efforts to enhance efficiency for
sensitivity and reanalysis would go a long way toward making the design of
realistic structures a viable proposition.

CONCLUSIONS

The design sensitivity capability for composites to be available in the
next release of MSC/NASTRAN was designed for generality, whereby the design
variables can be Taminae thicknesses, orientation angles, material properties
or a combination of all three. It is envisaged that this capability would
constitute a powerful first step toward optimizing composite structures.




Furthermore as part of a research effort MSC/NASTRAN was linked to a
general-purpose optimizer CONLIN for fully automated structural design
synthesis. It has been demonstrated that the coupling of a large-scale finite
element package 1ike MSC/NASTRAN with a powerful optimizer will give designers
a powerful tool to carry out practical optimization of real-life complicated
structures. It should however be mentioned that only sizing type of design
variables (i.e. lamina thicknesses) are permitted in our optimization
module. This is because no proper formulation is currently available to deal
with optimization problems involving other types of design variables (e.g.,
orientation angles and material properties).

A unique feature of the coupling is the capability for the user to
intervene at any stage of the redesign process and to modify design
constraints or design variables and to carry on from the previous stage. Man-
machine interaction is an essential ingredient for realistic optimization of
structural problems.
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TABLE 1. FLOW CHART FOR OPTIMIZATION PROCEDURE

INITIAL ANALYSIS

CREATE DATA BASE

SENSITIVITY
ANALYSIS
CONLIN OPTIMIZER

( UPDATE DESIGN VARIABLESJ
MSC/NASTRAN ANALYSIS

PRINT RESULTS

UPDATED DATA BASE

CHANGE CONSTRAINTS OR
CHANGE DESIGN VARIABLES
CREATE NEW NASTRAN DECK

PRINT RESULTS

TABLE 2. RESULTS OF OPTIMIZATION

ANALYSIS o, o, Oy o, O
NUMBER | WEIGHT | 1(00) 1(45) 2(00) (2-45) 3(00)
1 .3575 1.1632 | 1.1421 - -
2 .3562 .9446 .9076 - - -
3 .3545 .9886 .9238 - - -
4 .3541 .9948 .9160 - - -
5 .3540 .9982 9164 - -
6" .3539 .9990 .9983 | 1.0999 1 1 053 |1.1634
7 .3554 .9388 .9469 .9799 .9921 .9871
8 .3552 9552 .9651 .9855 .9994 .9805
9 .3552 .9585 .9690 .9854 .9999 .9769
10 .3552 .9594 .8700 .9853 1.0000 .9757

“User Intervention
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TABLE 3. VARIATION OF

TABLE 4.

SENSITIVITY COEFFICIENTS WITH RESPECT TO aAB

AB A
10.0 -.072539
1.0 -.082207
A -.082766
.01 -.082803
.001 -.082819
.0001 -.082836
.00001 -.082940
.000001 -.079559*
.0000001 -.098504
*Degrades

SENSITIVITY COEFFICIENTS FOR FUNDAMENTAL FREQUENCY

DESIGN VARIABLE

SENSITIVITY COEFFICIENTS

0° 0.38200

Ply-Thickness 45°/-45° -0.89380
90° -0.01774

0 -0.08280

Ply-Angles 45°/-45° -0.10490
90" -0.00633

0 1.48870

Material Properties 45°/-45° 0.22640
90° 0.00444
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TABLE 5.

ESTIMATE OF CPU TIME ON VAX 11-780

Initial Analysis

Sensitivity Analysis

Optimization

Analysis

Per lteration

Example 1 Example 2
Rectangle with Cutout Delta Wing
650 DOF 400 DOF

39 Design Variables

430 Secs.

257 Secs.
(39 Constraints)
190 Secs.
(10 Constraints)

3 Secs.

135 Secs.

395 Secs.
(39 Constraints)
330 Secs.
(10 Constraints)

60 Design Variables

300 Secs.

180 Secs.

(6 Constraints)

3 Secs.

115 Secs.

300 Secs.
(6 Constraints)




THREE-PLY

FOUR-PLY

Figure 1. Exploded view of three cross-ply laminated plane structures.
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Figure 2. Typical failure envelope for a material such as concrete.
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Figure 3. Finite-element model of one-quarter plate.
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Figure 4. Delta wing analysis model (problem 2).

165



Figure 5. Delta wing design model (problem 2).
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Figure 6. Convergence of delta wing design.
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OPTIMIZATION OF SHALLOW ARCHES
AGAINST INSTABILITY USING SENSITIVITY DERIVATIVES*

Manohar P. Kamat
Georgia Institute of Technology
Atlanta, GA

SUMMARY

In this paper the author discusses the problem of optimization of shallow
frame structures which involve a coupling of axjal and bending responses., A
shallow arch of a given shape and of given weight is optimized such that its 1limit
point load is maximized. The cross-sectional area, A(x) and the moment of inertia,
I1(x) of the arch obey the relationship I(x) = p [A(x)I", n=1,2,3 and p is a
specified constant. Analysis of the arch for jits limit peoint calculation involves
a geometric nonlinear analysis which is performed using a corotational formulation,

The optimization is carried out using a second-order projected Lagrangian
algorithm and the sensitivity derivatives of the critical load parameter with
respect to the areas of the finite elements of the arch are calculated using
implicit differentation. Results are presented for an arch of a specified rise to
span ratio under two different loadings and the limitations of the approach for the
intermediate rise arches are addressed.

INTRODUCTION

With the advent of highly flexible large space structures the nonlinearity of
response of such structures plays a dominant role in the control of such structures.
Naturally, optimization of structures in nonlinear response is gaining prominence.
This paper addresses the issue of optimizing shallow frame structures in nonlinear
response involving a coupling of axjal and bending actions. The objective is to
optimize a shallow arch of a given shape and given weight such that its limit point
load is maximized. Besides having to perform a nonlinear analysis in calculating
the 1imit point load an issue of even greater concern is that of calculating the
sensitivity derivatives of the critical load parameter with respect to the design
variables, namely the cross—sectional areas of the elements of the discretized model
of the arch. Two approaches are available for the calculation of sensitivity
derivatives: the direct and the adjoint approach [1]. 1In general, the adjoint
approach is preferred for problems jinvolving nonlinear response [2] - [4]. The
popularity of the adjoint approach stems from the fact that the differential
equations governing the adjoint variable are linear even though the corresponding
equilibrium equations in terms of the true displacement variables are nonlinear,
But to date the author is unaware of the use of the adjoint approach for problems
involving limit point instability. The present work outlines a direct approach

* This work was supported by the Natjonal Science Foundation under Grant No.
ECE-8596016.
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similar to that used by the author and his co-worker in the case of shallow space
trusses [5]. In this approach the sensitivity derivatives of the critical load
parameter are obtained through an implicit differentiation of the nonlinear
equilibrium equations as explained below. The present discussion is restricted to
finite—element models of shallow arches whose cross sections obey the relationship

I(x) = p (AX)1" , n=1,2,3, p = specified constant (1)

SENSITIVITY DERIVATIVES OF THE CRITICAL LOAD PARAMETER

Consjder a shallow arch under a given distribution of loading. Assume that
dor is the smallest value of the parameter by which the given distribution of
loading must be scaled in order to produce instability of the arch. The parameter
» is then defined by the solution of the following system of equations of a finite-
element model of the arch.

ar
E.-O (2)
b
2
o m
| o5 | =0 (3)
quaqj

where 7 denotes the total potential energy of the model undergoing finite
displacements and qj, 4 = 1, 2 ...N denote the generalized nodal displacements of
the model. The load parameter A occurs implicitly in Egs. (2) and (3). Assume
that A, for k = 1,2... m are the m design variables, which for the arch are the

cross—-sectional areas of the finite elements. To obtain we ©proceed as

D
oA
follows: K

Rewrite Eqs. (2) and (3) as

|
o

|
o

g (qj_(Ak). A(Ak),Ak> = (5)

i,

1, 2 ... N
k=1, 2 «0o m

An implicit differentiation of Egs. (4) and (5) with respect to Ak leads to
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Kl N i | % / o
aq1 8q2 BqN ) 3Ak BAk
S - i B I
Bq1 qu an ) BAk JA
1 4 L4 . . - . (6)
oq 9q aq,, o) 0 P
1 2 N Ak Ak
% % ..., 238 3 2 - 2
3q1 3q2 an ) h 3Ak aAk
for every k = 1,2 ...m. These equatjions may be written symbolically as
og of
H F -— - =
- - aAk aAk
= (7)
G 0 2 _x
BAk aAk

where H is the Hessian matrix of the potential energy of the finite-element model
of the arch, F is the given vector of nodal forces, and G is the row matrix of
derivatives of the determinant g of the Hessian matrix with respect to nodal

displacements. Equations (7) assume that ¢ is equal to zero since for constant
directional loading parameter ) does rot occur explicity in the stabjlity
criterion., The elements of G can be evaluated by using the formula

oH

%8 _ - =
3a, trace { (adj (1)) [ aqi] } (8)

oH
where [ 53 ] is the matrix obtained by differentiating each element of the deter-
3.
minant of H with respect to a typical component qj. With this, the sensitivity

derivative %%— can be calculated by the solution of Egs. (7) at a given (g,)).
k

Incidently, Eqs. (7) apply everywhere along the loading path including the limit

point. It is only at a bifurcation point that the determinant of H is not differ-

entiable. For very shallow arches instability typically occurs through snap-

through and hence Egs. (7) clearly apply.
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SPECIALIZATION TO A FRAME ELEMENT MODEL OF THE ARCH

We illustrate the derivation of the sensitivity derivatives for a finite
element model with 3-D frame elements. For its kinematic description the frame
element uses the co-rotational formulation as outlined in great detail in reference
[6]. According to this formulation, which permits large rigid body motion of the
element, the total motion is decomposed into a ri.gid body component and a strain-
producing component. For an element p-q of length L, the displacements of the end
q relative to the end p in the body fixed axes can be shown to be

) X - X L u -0
u q p q p
8 = [T - - 0 + [T] v =V (9)
v [ ]p Yo 7 Yp P q p
§ zZ - Z
0 W - W
W q p q p

Usj, Vj, and Wy (i = p or g) denote the global displacements of the nodes and
matrix [Tlp is [6].

[T]p = [T1(¢X,¢y,¢z)][T1(pr,eyp,ezp)] (10)
with
¢ ¢ c s s
i y 2z Yy z -y
[TT(ax’ay’az)] = |-c,8, + sxsycZ c.c, + sxsysZ sxcy 11)
s s +csec -a ¢ +c 88 c.c
Xz Xy z X Z Xy z Xy

c, = CO8 o,, S,
J ) ).

= 8in oy for i = x,y and z. Angles ¢x’¢y and ¢z are the initial
orjentation angles of the frame element and the angles exp’ 0 D and ezp are the

rigid-body rotations of the end p. In deriving Egs. (10) Euler angle

transformation is implied with the order of the rotations being a,s ay and a .
Similarly, with the restriction of small relative rotation within the element,

the rotations Wx, Wy and WZ of the end q relative to the end p are

wx exq - exp

y = [T] 6 -0 12
y p ya yp (12)
q/ -—

z zq zp
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Assuming the relative axjal and transverse displacements to be linear and
cubjc, respectively, the strain energy of the (p-gq)th or the e-th element, e =
1,2...m can be shown to be [6].

2
L
E 2 12 n 2 e ,2 _
Ve = U(p—q) B Efe{Ae(du) * 12 P he LB 3 Yz Le(8,0(¥ )]
e
L2
12 n 2 e 2
2 0yt (6% 5= ¥+ L (6 )(¥ )] (13)
Hence ©
m
T
m= ] U, ~Fg (14)
e=1
T .
where = (U, V. ,W ,® ) 6 U i W, 0 6 ) . All the expressions
3 (p p’p’xp’yp’zp’ "a’ "q’ "q” "xq’ Tyq’ zp) P

for the evaluation of matrices in Eqs. (7) are now available and, in principle,can

be evaluated even though the algebra may be rather tedious. The above expressions,
especially the [T]p matrix, can be simplified using the assumption of small rigid
body motions within a load step.

Indeed, Updated Lagrangian formulation for the kinematic description may have
simplified matters quite a bit especially if the expressions are linearized within
a load step but the above expressions using the co-rotational formulation permit
truly large displacements and with an highly efficient algorithm for the solution
of nonlinear equations like for instance the BFGS algorithm [7], it can permit
relatively large load steps resulting in a fewer number of load steps to attain a
given load level.

CONSTRAINED OPTIMIZATION

The optimization problem consists of maximizing the critical value of the load
parameter ) subject to the constraint on total volume of the structure and side
constrajints on member sjizes. Although it is perfectly permissible to pose the
problem as

min (f(A)
Subject to

~ ) (15)

#

AL (16)

=0 (7
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m
] AL, -V_=0 (18)

A, -A . 20 (19)

experience suggests the following well-posed problem

min (—Acr) (20)

subject to

m
) A, L. -V _ =0 (21)

A, - A 2 0 (22)

where lop is located by incrementing the load parameter and locating its level at
which the determinant of the Hessian vanishes. This can be done by monitoring
either the determinant or the inertia of the ejgenvalues of the Hessian matrix H.
Once an interval is located where the critical point 1s supposed to 1lie its
exact location is determined by a root-finding technique. With Eqs. (15)-(19)
there is no guarantee that the lowest value of 3 that satisfies Egs. (17) will
always be found.

The problem as posed by Egs. (20)-(22) is solved by using Powell's varijable
metric algorithm for constrained optimizatjon (VMCON) [8]. The required gradient
of the Lagrangian function corresponding to Egs. (20)-(22) involves the gradient
of the load parameter which is calculated using the expressions derived in the
previous section,

DISCUSSION OF RESULTS AND CONCLUSIONS

The first step was to validate the accuracy of the sensitivity derivatives,
This validation was performed by comparing the analytically calculated derivatives
using the expressions (6)-(8) with those calculated using central differences.
Since no previous studies exist that address the problem being discussed herein, it
was essential to generate a basis for commparison. Such a basis was provided by
desjgns that corresponded to maximum potential energy of the nonlinear deformations.
Even though previous studies on shallow trusses [5] have confirmed the
non-optimality of such designs they are relatively easy to generate and provide a
basjs for comparison with truly optimum designs.

It can be easily verified that designs which correspond to maximum potential
energy satisfy the condition

w® + nud
e e
S = —-———v——_— = C = Constant; e = 1, 2eoell (23)
e
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where Uz, Ug and Ve are the strajin energy due to stretching, the strain energy due
to bending, and the volume of the eth element, respectively.

Relations (23) can be easily met by a recurrence procedure that evolves
design for the (r+1)st iteration from that of the rth iteration according to

r+1 r Se P
Ay = oA, ( 3 ) (2h)
avg
where
m s b
Savg (e; US4 n UV (25)

o is a constant such that

m r+1

) A L =V
e e o}

e=1

and p is a sujtable exponent usually chosen to be equal to 1/2. Several designs
for a concentrated load at the crown and a uniformly distributed vertical loading
were generated for n = 1,2,3 using the mathematical programming procedure, VMCON
and the recurrence relations (23)-(24). Table 1 provides a comparison of these
desjgns, Differences between the two designs are indeed drastic especially for n =
3. A curious phenomenon was observed during the recurrence procedure namely, that
several non-converged intermediate designs had higher critical (limit) loads than
the final fully coverged designs with a uniform specific energy density
distribution, This is to be expected since the fully converged designs are
non-optimal. Table 2 provides the materijial distributions in terms of the
non—-dimensional areas of the five frame elements used to model half the arch.

An attempt to optimize a five element arch model with y{(x) = 5 sin %ga failed
for n = 2,3 because no limit point load could be determined. This is not
surprising since for very low rise to span ratios the arch is likely to behave more
like a flexible nonlinear beam with no susceptibility to snap-through. Likewise
for arches with high rise to span ratios instability occurs by bifurcation at load
levels far below their limit points and hence the problem belongs to the class of
linear eigenvalue problems. For arches with intermediate rise to span ratios the
type of instability can change from the initial limit point to a bifurcation type
at convergence, 1In fact the two points may coincide during optimization at which
point the critical load parameter is no longer differentiable with respect to the
design variables. Recourse must be then made to techniques of nondifferentiable
optimization [8].

173



174

REFERENCES

Haftka, R. T. and Kamat, M. P., Elements of Structural Optimization, Martinus
Nijhoff Publishers, 1984,

Mroz, Z., Kamat, M. P., and Plaut, R. H., "Sensitivity Analysis and Optimal
Design of Nonlinear Beams and Plates", Journal of Structural Mechanics, Vol,.
13, No. 3; 1985) PP« 2“5—266.

Mroz, Z. "Sensitivity Analysis and Optimal Design with Account for Varying
Shape and Support Conditions", Computer Ajided Optimal Design, NATO
Advanced Study Institute, Portugal, 1986, Vol. 2, pp. 109-144,

Arora, J. S. and Wu, C., C.,, "Design Sensitivity Analysis of Nonlinear
Structures, Computer Aided Optimal Design, NATO Advanced Study Institute,
Portugal, 1986, Vol. 2, pp. 228-246,

Kamat, M. P. and Ruangsilasingha, P., "Optimization of Space Trusses Against
Instability Using Design Sensitivity Derivatives", Engineering Optimization
Vol. 8, 1985, pp. 177-188.

Kamat, M. P., "Nonlinear Transient Analysis by Energy Minimization,-
Theoretical Basis for the ACTION Computer Code, NASA-CR-3287, July 1980.

Avriel, M., "Nonlinear Programming", Prentice Hall, Englewoods Cliff, N, J.
1979.

Wardji, Y. Y., and Polak, E., "A Nondifferentiable Optimization Algorithm for
Structural Problems with Eigenvalue Inequality Constraints", Journal of
Structural Mechanics, Vol. 11, No. 4, 1984, pp. 561-577.




Table 1. Comparison of Designs for Different Loadings on an Arch
y(x) = a sin Ix ; a=10, L =100
L
(erdopt / Oep) unirfs
Type
of Design Concentrated Load at the Uniformly Distributed Vertical
Crown Loading
n=1 ns= 2 n = 3 n=1 n=2 n= 3
VMCON
with Sensitivity | 1.033 1.305 2.15 1.0013 1.207 1.932
Derivatives
Max. Potential
Energy
with Recurrence | 1.047 1.064 1.092 1.005 1.024 1.048
Procedure

Table 2. Material Distributions for the Optimal Arch Designs of Table 1 Using VMCON

Type of Loading n (Ae)OPT/(Ae)unif'

e =1 e =2 e = 3 e =4 e =5

Concentrated 1 0.8774 0.8662 0.8839 1.0452 1.340
Load at 2 0.7036 0.8370 0.9963 1.1577 1.3153

the Craqwn 3 0.5780" 0.8860 1.0700 1.1953 1.2907
Uniformly 1 0.9471 1.0240 1.0455 1.0080 0.9760
Diatributed 2 0.7662 0.9526 1.0663 1.1080 1.1168
Vertical Loading 3 0.6122 0.9285 1.0927 1.1738 1.2095
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SUMMARY

A survey of methods for sensitivity analysis of the algebraic eigenvalue problem
for non-Hermitian matrices is presented. In addition, a modification of one method
based on a better normalizing condition is proposed. Methods are classified as Di-
rect or Adjoint and are evaluated for efficiency. Operation counts are presented in
terms of matrix size, number of design variables and number of eigenvalues and
eigenvectors of interest. The effect of the sparsity of the matrix and its derivatives is
also considered, and typical solution times are given. General guidelines are estab-
lished for the selection of the most efficient method.

Introduction

The behavior of many physical systems is completely determined by the
eigenvalues of the system. Variations in parameters lead to changes in these
eigenvalues and hence in response characteristics. Thus derivatives of eigenvalues
and eigenvectors are of immense interest in several fields of physical sciences and
engineering.

The derivatives (or synonymously, sensitivities) are of interest for a variety of
uses. Design optimization is intimately connected with sensitivity analysis and the
cost of calculating derivatives is the dominant contributor to the total cost in many
optimization procedures. Most optimization algorithms require many analyses of the
system and derivatives can be effectively used to approximate the eigenvalues and
eigenvectors of a modified system and thus reduce the cost of reanalysis, especially
in large systems. In addition, derivatives are very usefui in design trend studies and
for gaining understanding of and insight into the behavior of physical systems.
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Finally, derivatives of eigenvalues are valuable in calculating the statistics of
eigenvalue locations in probabilistic analyses.

The application of derivatives is not restricted to design-oriented activities.
Sensitivity analysis is also playing an increasing role in determining the analytical
model itself. In the areas of system identification and analytical model improvement
using test results, sensitivity analysis is of growing importance. Much recent work
in these fields is directly dependent on the calculation of eigensystem derivatives.

it has been found in certain cases that second order derivatives are effective in
improving accuracy of approximations[1-7] and efficiency of design[3,8,9].
Eigenvalues are usually non-linear functions of design parameters and a second or-
der approximation offers a much wider range of applicability compared to the first
order approximation. Intermediate variables which may improve the quality of first
order approximations are not generally available for eigenvalue approximations.
Also, some optimization algorithms require second order derivatives, and first order
derivatives of optimal solutions require second order derivatives of constraints[7].
The use of second derivatives can also greatly reduce the number of reanalyses re-
quired for the convergence of an optimization procedure[8,10]. Further, in certain
optimization algorithms, second order approximations for eigenvalue constraints can
drastically relax the move limits, thus achieving a nearly optimum trajectory, and can
virtually eliminate the need for trial and error adjustment of move limits, thus im-
proving the performance of the optimizer[10]. Looking at another aspect, in problems
where instabilities are to be avoided, a first order calculation may completely fail to
detect instabilities[2]. References [11,12] also offer examples of the usefulness of
second order derivatives.

The problem of calculating the derivatives of symmetric and Hermitian
eigenproblems is relatively simple and solution procedures are well-established,
e.g.[13-17]. However, many physical problems give rise to non-self-adjoint formu-
lations and thus lead to general matrices. An important example is aeroelastic sta-
bility which requires the solution of eigenproblems with complex, general and fully
populated matrices. General systems are also obtained in damped structural sys-
tems and in network analysis and control system design where the eigenvalues are
usually called poles. This study presents a comparative analysis of the various
methods available for calculating the derivatives of the general eigenproblem and
propose some modifications to existing techniques. A considerable amount of liter-
ature is available on the subject and a comparative analysis of the various methods
will be of value for selecting the most efficient technique for a particular application.
The purpose of this paper is to summarize the more efficient techniques proposed
so far and to establish guidelines for the selection of the appropriate method for a
given problem. Only the essentials of these methods are presented with details re-
ferred to the original references. Attention is restricted to the general eigenproblem
and techniques that are useful only for the self-adjoint problem are not considered.
The present discussion is limited to the case of distinct eigenvalues.




Problem Definition

The matrix eigenproblem is defined as follows:
Aut®) = 204k (1)
and the corresponding adjoint problem is
viOTa = (0T (2)

where A is a general complex matrix of order n and A0, ulk) and v(*) are the k -th
eigenvalue and right and left eigenvectors respectively. The superscript T denotes
the transpose. All eigenvalues are assumed to be distinct.

The matrix A and hence, A%, u) and vk are functions of design parameter
vector p with individual parameters denoted by Greek subscripts, e.g. p,. Deriva-

tives with respect to p, are denoted by the subscript ,a e.g., gA = A, . Allthe
design variables are assumed to be real. Py -
The well-known biorthogonality property of the eigenvectors is given by
vOTuW) = g iff i #j (3)

Note that, the left hand side of eq. (3) is not an inner product as usually under-
stood, since v{) and/or u¥) may be complex vectors. The left eigenvectors of A are
the right eigenvectors of AT and vice versa.

Normalization of Eigenvectors

The eigenvectors ul%) and v{%) are not completely defined by egs. (1) and (2). A
normalization condition has to be imposed to obtain unique eigenvectors. For brev-
ity, let us consider only the normalization of the right eigenvecter. A normalizing
condition frequently imposed in the self-adjoint case is the following:

uTut = 4 (4)

However, it is not always possible to use eq. (4) for non-self-adjoint problems as
ulkTy) can equal zero or a very small number causing numerical difficulties. This
is true even if the matrix A is real. Unfortunately, considerable confusion exists in the
literature regarding this point and several authors arbitrarily adopted eq.(4) as a
normalizing condition for non-self-adjoint problems, €.9.[8,9,11,18-21]. In this re-
spect, the formulations of these references are not rigorous for general matrices.

One possible way to avoid the above difficulty is to replace eq.(4) by
u’ u' =1 (5)

where superscript * denotes a conjugate-transpose. Eq. (5) is not prone to the diffi-
culties of eq. (4) because ulk)'ulk) is always guaranteed to be non-zero. But, eq.(5) is
not a complete normalizing condition as it does not render the eigenvector unique.
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If u satisfies eq.(5), then w = ue®, where i =/ —1 and c is an arbitrary real num-
ber, also satisfies eq.(5).

Another normalization condition, inspired by the biorthogonality property of the
left and right eigenvectors, is

VT = 4 (6)

Eq.(6) also does not render the eigenvectors unique. It must be emphasized that
if the eigenvector is not unique, neither is its derivative.

The normalization condition
u,(Tl;) =1 (7)

is very attractive because it renders the eigenvectors unique and at the same time,
the index m can be chosen easily to avoid ill-conditioning. Apparently, only
Nelson[22] used this normalizing condition in obtaining the derivatives of
eigenvectors. The index, m, may be chosen such that

Iu I—maxlu M (8)

Another choice for m, used by Nelson[22], is

(k) | (k) | (k) l

lup’ | vy = max | u; Iv(k)l (9)

The nature of uncertainty of the derivative of the eigenvector is of some interest.
Without a normalizing condition, an eigenvector is uncertain to the extent of a non-
zero constant multiplier. The derivative of an eigenvector is uncertain to the extent
of an additive multiple of that eigenvector. To show this, let utk) be an eigenvector
so that wik) = culk) is also an eigenvector. Then, if p, is a design parameter,

ow _ ocu®) _ ou®
Py OPq 9Py

where d = (6c/6§) is arbltrary In practice, the constant d depends on the way the
eigenvectors ulk) and w(*) are normalized.

+ gu'® (10)

Methods of Calculation

The various methods of calculating the derivatives of eigenvalues and
eigenvectors can be divided into three categories:

1. Adjoint Methods, which use both the right and the left eigenvectors.
2. Direct Methods, which use only the right eigenvectors.

3. lterative Methods, which use an iterative algorithm that converges to the re-
quired derivatives.




Adjoint Methods

The first expressions for the derivatives of eigenvalues of a general matrix seem
to have been derived by Lancaster[23]. Considering only a single parameter,
Lancaster obtained the following expressions for the first and second derivatives of
an eigenvalue:

NOLAD

Mo 2 Y At (11)
E T

o VA u® syl VA u) WOTA k) -
e T (R 21 080 = 20y W7y (0T 0)

An expression corresponding to eq. (11) for a generalized quadratic eigenvalue
problem was obtained by Pedersen and Seyranian[24].

Morgan[25] obtained an expression for the derivative of an eigenvalue without
requiring the eigenvectors explicitly. His expression is equivalent to

" trace of {[adj(A - l(k)l)]A, a}

,a

A

(13)
trace of adj(A — A

The corresponding expression for derivatives with respect to matrix elements was
derived by Nicholson[26].

It can however be shown that[27]

adj(A — A0 = ¢ uWyWT (14)
where f; is a constant and that[28]

trace of {[ adj(a — 2 ]a a} = v A o

(15)
trace of adj(A — A = tkv(k)Tu(k)

Thus, in the computation of adj[A — A{K1], both right and left eigenvectors are
implicitly computed, in view of eq. (14). Egs. (15) also show that Morgan’s eq. (13) is
equivalent to Lancaster’s eq. (11). Woodcock[29] also obtained formulas involving
the adjoint matrix for the first and second derivatives of eigenvalues. An operation
count shows that calculation of the adjoint matrix is several times more expensive
than the explicit calculation of right and left eigenvectors so that Lancaster’s formula
is preferable to formulas requiring the adjoint matrix. This conclusion is also sup-
ported by sample computations[30]. In addition, although eq. (13) was used satis-
factorily for small problems[31,32), numerical difficulties were reported for
reasonably large problems[33]. Woodcock’s formula for the second derivative of the
eigenvalue requires a partial derivative of the adjoint matrix and this is so compli-
cated that Woodcock himself recommends the finite difference method. Formulas
due to Morgan and Woodcock are not therefore considered in the following.
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To obtain the second derivatives of eigenvalues, the first derivatives of left and
right eigenvectors are calculated either implicitly[9,11,23] or explicitly[1,8,12,34,35].
Since the eigenvalues are assumed to be distinct, the first derivatives of eigenvectors
can be expressed as
k _ n
" = jszja“m

n
u and v = '}:1dkjuvm (16)
j:

Rogers[36] obtained the coefficients ¢,;, and d;, as
oo AT -y (17)
kia (A = A0 0Ty0 !
v(k)TAI au(J)

S IUINCIAD

It can be observed that
v(k)Tu(k)

~ CikaT T (19)
T DT

dyja =

Reddy[37] derived an equivalent expression for the response derivative by casting
the derivative as the solution of a forced response probiem for the same system.

Note that, in view of eq. (10), the coefficients ¢, and dy,, in eq. (16) are arbitrary
and depend on the normalization of the eigenvectors. For example, if eq. (7) is used
to normalize the right eigenvectors, then

Ckka = — § ] Ckja ul‘(;’;) (20)
=k
and if eq. (6) is used to normalized the left eigenvectors, then
dkka = ~ Ckka (21)

It has been proposed[38,39] that the eigenvector derivative be approximated by
using less than the full set of eigenvectors in the expansion of eq. (16) so that the
evaluation of eigenvector derivative by Adjoint Method could become cheaper. This
variant of Adjoint Method has received mixed reports in the literature[22,38]. The
quality of such an approximation is difficult to assess beforehand and the selection
of eigenvectors to be retained in the expansion is problem dependent. It has not
been considered in this work because a meaningful comparison with other methods
cannot easily be made. However, this consideration should not be ignored while
implementing the sensitivity calculations for particular problems.

The expressions for the second derivatives of eigenvalues were obtained by
Plaut and Huseyin[35]. For the sake of simplicity in expressions, let us assume,
without loss of generality, that the left eigenvectors are normalized as in eq. (6).
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Plaut and Huseyin[35] obtained the second derivatives of eigenvalues with respect
to uncorrelated parameters p, and pp as

?\f'gB = v(k)TA, 0[Bu(k) + v(k)TA' auf'g + vf'gTA, au(k) (22)
which can be equivalently written, without involving the derivative of the left
eigenvector, as

Ao = vOTA oput + v = )+ vOTA g - ghu® (23)

For a diagonal second derivative, eq.(22) is simplified to

A8 = v u + 2vTa u) (24)

, oo

Eq. (22) can be rewritten using eqgs. (17) and (18) as
KT k '

Wi = VTR g+ £ 08— 2Dt + cygpd) (25)

Jj=1
Jj#k

Crossley and Porter[1,40] derived similar expressions for derivatives with re-
spect to the elements of the matrix. Expressions for N-th order diagonal derivatives
were derived by Elrazaz and Sinha[5].

In calculating the derivatives using egs. (11), (16)-(25),

¢ the first derivative of an eigenvalue requires the corresponding right and left
eigenvectors.

¢ the first derivative of an eigenvector requires all the left and right eigenvectors.

¢ the second derivative of an eigenvalue requires the corresponding right and left
eigenvectors and their first derivatives.

Direct Methods

The second category comprises methods that evaluate the derivatives using only
the right eigenproblem. Direct Methods typically involve either the evaluation of the
characteristic polynomial or the solution of a system of linear simultaneous equations
without requiring all the left and right eigenvectors. Methods requiring the evalu-
atlon of the characteristic polynomial and the derivative of the determinant[33,41] are
O(n%) processes while other methods considered here are at most O(n3) processes.
In addition, the determination of the characteristic polynomial is, in general, an un-
satisfactory process with respect to numerical stability, even when all the
eigenvalues are well-conditioned[42]. While numerically stable algorithms have been
proposed for evaluation of the characteristic polynomial[43], the computational ex-
pense still seems to be formidable. Hence, we do not consider these methods.
Methods requiring the solution of a system of equations have the particularly attrac-
tive feature that the coefficient matrix needs to be factored only once for each
eigenvalue regardless of the number of parameters and the order of the derivatives

-
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required. Thus, they are very useful in applications where higher order derivatives
are required.

The earliest method in this class is due to Garg[18] who obtained the first deriv-
atives of the eigenvalue and the eigenvector by solving two systems of (n + 1)
equations each in the real domain, without requiring any left eigenvectors. However,
his formulation involves several matrix multiplications. Rudisill[19] proposed a
scheme in which only the corresponding left and right eigenvectors are required to
calculate the first derivative of the eigenvalue and the eigenvector. This was refined
by Rudisill and Chu[20] to avoid calculating the left eigenvectors altogether. Solution
of a system of only (n + 1) equations is required (though in the complex domain) to
obtain the first derivatives of eigenvalue as well as eigenvector. Extension to higher
order derivatives is straightforward. Cardani and Mantegazza[21] proposed solution
methods of the same formulation for sparse matrices and extended it to the quadratic
eigenproblem.

One weakness that is common to all the above formulations that do not require
left eigenvectors[18-21] is that they rely on the normalization condition given by eq.
(4), which is unreliable for general eigenproblems as discussed earlier.

Nelson[22] circumvented this difficulty by using the normalizing conditions

vOTy® = 1 and u,(,',() =1

However, the formulation of Rudisill and Chu is superior to Nelson’s formulation
in that it does not require any left eigenvectors.

In this paper, we propose a variation of the Rudisill and Chu formulation which
does not rely on the questionable normalizing condition of eq. (4) and at the same
time requires no left eigenvectors.

Differentiating eq. (1), we get
Auflg +A au(k) = )»(k)uflg + kf'gu(k) (26)

which can be rewritten in partitioned matrix form as
(k) g (k)
[A - A || —Uu ]{iiky}:‘ —-A,qu (27)
,

Now, we impose the normalizing condition of eq. (7). Differentiation of eq. (7)
yields,

k
ul =0 (28)

Because of eq. (28), the m-th column of the coefficient matrix in eq. (27) can be
deleted. Eq. (28) also reduces the number of unknowns by one so that eq. (27) is now
a system of n equations in n unknowns. Eq. (27) is rewritten as

By, =r (29)




where
B=[A-29 | —uky
(k)

u' a
yi.7= i(k—)—
,a with m-th element deleted

(k)

-th column deleted

r= -—A,au

To get second derivatives, differentiate (27) with respect to P and get

k k k k k), (k
(A = A Onuldy = uBh g = — A L -, - 20
=l

or, in partitioned matrix form,

(k)
u
[ = w00 b= A~ = Al
,af

= (A~ A nu?

Following the same reasoning as before, eq. (32) is written as

By, = s
where
k
e
Y27 9w
,ap with m-th element deleted
s= M -, - a9 - @, - A

(30)

(31)

(33)

(34)

Note that, if LX) is a simple eigenvalue of A and if u{k) # 0, then the matrix A is
of rank (n — 1) and the m-th column that is deleted is linearly dependent on the other
columns. Hence the matrix B is non-singular. The matrix B will also be well-
conditioned if u{¥) is the largest component in the eigenvector ulk) and the matrix A
is itself not ill-conditioned. The vectors y4 and y, can be obtained by standard sol-
ution methods. If the matrix A is banded or if the derivatives of both right and left
eigenvectors are required, it may be more efficient to use a partitioning scheme as

described in the appendix.
In summary, we note that, in calculating derivatives by Direct Method,

® [eft eigenvectors are not used.

® acomplete solution of the eigenvalue problem is not required, if the derivatives
of only a few of the eigenvalues and eigenvectors are sought. This is in contrast
to the Adjoint Method which requires all the left and right eigenvectors to cal-

culate the first derivative of any eigenvector.
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e calculation of any derivative requires the solution of a system of linear
equations.

® only one matrix factorization needs to be performed for all orders of derivatives
of an eigenvalue and its corresponding right and left eigenvectors.

Iterative Methods

Andrew[44] proposed an iterative algorithm to calculate the first derivatives of
eigenvalues and eigenvectors. This algorithm is a refined and generalized version
of the iterative scheme developed by Rudisill and Chu[20]. Except for the dominant
eigenvalue, the convergence of this algorithm seems to be very much dependent on
the choice of the initial values for the derivatives. To be efficient for non-Hermitian
matrices, this iterative method requires a complex eigenvalue shifting strategy which
is not easy to implement. Hence this method is not considered.

Relative Computational Cost

In this section, we compare the efficiency of calculating the derivatives of
eigensystems as a function of the size of the matrix n , number of design parameters
m and number of eigenvalues of interest /.

To start with, let us consider the operation counts (flops) for the Adjoint Methods
given by egs. (11),(16)-(25) and the Direct Methods given by eqs.(29)-(34). They are
summarized in Table 1. It should be noted that the operation counts represent an
estimate of the actual number of operations performed by a solution routine and in-
clude only the most significant terms. The actual number of operations will vary
slightly depending on programming details. The effect of the sparsity of the matrix
derivative A,a is modeled by the parameter x, defined such that the the number of
operations in evaluating the product A ,u is equal to kn2(that is, x = 1 corresponds
to a full A ).

The eigenvalues are calculated using the EISPACK subroutine package [45] by
first reducing the matrix to upper Hessenberg form using unitary similarity transf-
ormations and then applying the QR algorithm. The number of operations and CPU
time for calculating the eigenvalues are not counted in the following results as they
are not relevant in comparing the methods to calculate the derivatives.

The right eigenvectors are calculated by inverse iteration on the same upper
Hessenberg matrix used for calculating the eigenvalues and back transformation us-
ing standard subroutines in the package EISPACK. The corresponding operation
count is given in Table 1. For the calculation of left eigenvectors, it is important to
note that there is no need to repeat the process with the transposed matrix. The left
eigenvectors are obtained cheaply using forward substitution in place of backward
substitution in the inverse iteration process. There is also no need to repeat the
matrix factorization. A subroutine was written to calculate the right and left

eigenvectors in this manner and the corresponding operation count is given in Table
1.




Table 1 gives the operation count of evaluating the individual steps. To obtain
the number of operations involved in evaluating the derivatives, we must add the
operation counts for all the steps required in the calculations. These counts are
given in the following discussion.

CPU Time Statistics

In the following tables, computational cost for the calculation of the first and
second derivatives of eigensystems are compared for matrices of order 20, 40 and
60. The CPU time statistics are obtained on the IBM 3084 computer using the
VS-FORTRAN compiler with no compiler optimization. The ratio of operation
count(OC) and CPU time for various operations is about 10° operations per CPU
second with a variablity of 27 percent.

The matrices are generated for the dynamic stability analysis of a compressor
stage rotor with mistuned blades. The geometric and structural parameters of the
rotor and formulation and method of analysis are the same as those of NASA Test
Rotor 12 described in reference[46] except that the number of blades and the
torsional frequencies are varied. The torsional frequency values are selected ran-
domly from a population of mean 1.0 and standard deviation 0.01. The standard de-
viations of the actual samples are slightly different.

Calculation of First Derivatives of Eigenvalues Only

Operation Count

Adjoint Method 1(%n2 + kmn?)
. 3
Direct Method I[_é_ + (k + 1)mn?]

It is clear from the operation count that the Adjoint Method, which is an 0(n?)
process, is superior to Direct Method, an 0(n3) process, for large n. The number of
design variables and the number of eigenvalues of interest have no bearing on this
conclusion. As the order of the matrix increases, the Direct Method becomes more
expensive. For example, for 5 design variables and 10 eigenvalues of interest, the
CPU time for the Direct Method is 2.3 times more expensive than for the Adjoint
Method for n = 20, and for n=60, the ratio is 3.0.

187



188

Calculation of First Derivatives of Eigenvalues and Eigenvectors

Operation Count

7

Adjoint Method ?n3 + Imn2(x + 2)
Direct Method InT + Imn2(x + 1)

When the derivatives of both eigenvalues and right eigenvectors are required,
the choice of method is dependent on the values of / and m. When very few
eigenvalues are of interest, the Direct Method is cheaper. When many eigenvalues
are of interest, the Direct Method is more expensive than the Adjoint Method. How-
ever, this effect of the number of eigenvalues of interest is less significant when the
number of design variables is large. As the number of design variables increases,
the Direct Method becomes more competitive, even when all eigenvalues are of in-
terest. For a 60 x 60 full (x = 1) matrix, this is illustrated in Figure 1.

The operation count shows that the computation by Adjoint Method of
elgenvector derivative, which is necessary for the second derivative of eigenvalue,
is an O(nd) process and is more expensive than the computation of the eigenvector
itseif which is an O(n?) process using the procedure described above. This fact is
significant as some authors have stated the opposite[2,3].




Calculation of First and Second Derivatives of Eigenvalues only

Operation Count

Adjoint Method L3+ (x + 1)mnd + 1 (3) n
2 2
. n3 m
ELAEGET 2 +
Direct Method % 1(2)n 3k + 1)
3
Direct-Adjoint Methad /—’13— +1 (’3) n2¢ + Imn2(2x + 1)

The Direct-Adjoint Method denotes the calculation of the eigenvector derivatives
by the Direct Method and the eigenvalue derivatives by the Adjoint Method. The
third term in the operation count for the Direct-Adjoint Method is significant only
when m is small. From the operation count, it is seen that the Direct-Adjoint Method
is always cheaper than the Direct Method. Hence, the choice is between the Adjoint
Method and the Direct-Adjoint Method. Here, considerations similar to those of the
last section hold and the choice of method depends on the values of I and m. When
few eigenvalues are of interest, the Direct-Adjoint Method is cheaper. When many
eigenvalues are of interest, the Adjoint Method is superior. But this advantage of
Adjoint Method diminishes as the number of design variables increases. This is
again illustrated for a 60 x 60 full matrix (x = 1) in Figure 2.

Concluding Remarks

The normalization of the eigenvector needs to be properly related to its deriva-
tive. In practice, this means that the derivative of the eigenvector is to be normalized
before it is used, to conform to the normalization of the eigenvector itself. When the
eigenvector is not normalized in a unique manner, its derivative cannot be evaluated.
Fixing one of the components of the eigenvector is the best normalizing condition for
computation of the derivative. The methods found in the literature are extended to
apply to eigenvectors normalized in this manner.

Various methods for calculation of derivatives of eigenvalues and eigenvectors
are surveyed and classified as Direct or Adjoint. Adjoint Methods use both the left
and the right eigenvectors whereas the Direct Methods use only the right
eigenvectors. Their relative efficiency is evaluated as a function of matrix size,
number of eigenvalues of interest and the number of design parameters. General
recommendations are made for the cases when (a) eigenvalue first derivatives are
required, (b) eigenvalue and eigenvector first derivatives are required, and (c)
eigenvalue second derivatives are required.
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When only eigenvalue first derivatives are required, the calculation of left
eigenvectors is worth the expense as the Adjoint Method is shown to be superior to
the Direct Method. When first derivatives of eigenvectors are also required, the de-
cision is dependent on the problem size, the number of design variables and the
number of eigenvalues of interest. When the first and second derivatives of
eigenvalues are required, similar considerations hold. It is also shown that once the
first derivatives of eigenvectors are calculated, the second derivatives of eigenvalues
are calculated more efficiently by the Adjoint Method than by the Direct Method.
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Appendix

Modification of Direct Method for Banded Matrices
Equations (29) and (33) can be written as
(A — 7k(k)l)m-th column deleteduftg m-th row deleted — 7",(1“ =r (A1)
Let ulk) be normalized so that uff) = 1

Eq. (A1) is a system of n equations. Writing the m-th equation separately, we
have, if the superscript (k) is omitted for notational convenience,

Cx , — A x =t (A2)
and

a;,x‘Ol P (A3)
where

C = (A — M)m-th row and column deleted

X a = U a mth row deleted

X = Um_th row deleted

t = I'm.th row deleted

a,Tn = m-th row of A with the m-th column deleted
From (A3),

Mo =arX g~ I (A4)
From (A2),
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Xq=C ' ox+1) (A5)
Eliminating x ,, we have
T
o~ t—bﬂ%r’i (A6)
1—xby
where
by, = [C1 'ap,
Proceeding in a similar manner for the left eigenvector,
¥.o=[1C170 gy + 1) (A7)
where

Y.a =V, a m-th row deleted

Y = Vm-th row deleted

t; = (")m-th row deleted

r, being the appropriate right hand side.
Thus the following procedure can be used to obtain the derivatives 7&1 gandu .
1. Form a LU decomposition of the matrix C.
2. Solve b, = [CT] " 1a,, by forward substitution.
3. Calculate A , from (A6).
4. Calculate x , from (A5) by backward substitution.
5. Expand x ,tou , settingu, , = 0.

If the derivatives v , of the left eigenvectors are also required, only three further
steps are needed. '

6. Calculatey , from (A7) by forward substitution.
7. Expandy ,tov ,settingv, ,=0.

8. Normalize v , appropriately depending on the normalization of v. For example,
to obtain the derivative of the left eigenvector that satisfies the normalization
condition of eq. (6), subtract (vTu,OL + v,Tau)v .

The matrix C needs to be factored only once. Also, the matrix C retains the
bandedness characteristics of the original matrix A. Furthermore, higher derivatives
can be obtained by merely substituting an appropriate right hand side vector, r.
However, higher order derivatives can suffer in accuracy because of accumulated
round-off error.
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The conditioning of matrix C needs some comment. Note that C is obtained from
the singular matrix (A — A(0I) by deleting both the row and column corresponding to
index m. Hence, for matrix C to be non-singular, one must make sure that the m-th
row is linearly dependent on the other rows as well as that the m-th column is line-
arly dependent on the other columns. In other words, C is non-singular iff
ufk) + 0 and v{f) # 0. 1If vk is very small compared to the largest element in v(K)
steps 2 and 4 in the above procedure will give inaccurate results even if u%) is the
largest element in ulk), In general, it is not possible to make a good choice for m
without the knowledge of the left eigenvector. Since the calculation of left
eigenvector by forward substitution is cheap, it is suggested that the left eigenvector
be calculated and the index m be chosen as in €q.(9). This is the same criterion used
by Nelson[22] and will assure as well-conditioned a matrix C as possible.
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Table 1. Operation Counts

Eigenvectors
Operation Operation Count
Evaluation of right eigenvectors 1(2n?)
Evaluation of left eigenvectors l(%n2)
Adjoint Methods
Operation Operation Count
Evaluation of eq. (11) Imn2x
Evaluation of eqs . (16),(17),(18) Imn2(x + 2)
. my 2
Evaluation of eq. (25) / (2 ) neg
Direct Methods
Operation Operation Count
LU decomposition of matrix B 1(n3/3)
Formulation and solution of eq.(29) Imn2(x + 1)
Formulation and solution of eq.(33) / ('g) n?(3x + 1)
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Figure 1. CPU Times for calculation of first derivatives of eigenvalues and eigenvectors for a 60 x 60
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STRUCTURAL SYSTEMS WITH REPEATED FREQUENCIES

I.U. Ojalvo
University of Bridgeport
Bridgeport, Conn.

ABSTRACT

Repeated or closely packed modal frequencies are common physical
occurrences for vibrating structures which are complex or possess
multi-planes of symmetry. The computation of the sensitivity to
structural modifications for these frequencies and mode shapes 1is
made difficult by the fact that the mode shapes are not unique, since
any linear combination of eigenvectors corresponding to a repeated
eigenvalue is also an eigenvector.

This paper extends the work of Chen and Pan [1], who used modal
expansion techniques for accommodating the sensitivity analysis of
structures with repeated eigenvalues. Starting with a discussion of
the physical significance of sensitivity analysis for repeated
frequency modes, the paper presents a derivation of the governing
equations for the derivatives of a repeated eigenvalue. This is
followed with a small example to illustrate the results. An efficient
computation procedure, based upon an expansion of Nelson's ideas [2]
for large banded systems, is then proposed for systems with repeated
or closely spaced eigenvalues.
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IMPORTANCE OF THE PROBLEM

The importance of obtaining gradients for eigenvalue problems
stems from the fact that gradients, or derivatives with respect to
system parameters, represent solution sensitivities. A knowledge of
these sensitivities permits efficient design modifications, yields
insight into the reasons for discrepancies between structural analyses
and dynamic tests, and suggests model changes to improve correlations.

KNOWLEDGE OF GRADIENTS:

YieLDs INSIGHT RE. PARAMETER SENSITIVITIES

PErMITS EFFICIENT DESIGN MODIFICATIONS

UNDERSTAND TEST/ANALYSIS DISCREPANCIES

SucGesTs MopeL CHANGES TO IMPROVE CORRELATION
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WHEN DO REPEATED FREQUENCIES OCCUR?

While a procedure for obtaining gradients efficiently was
presented a decade ago by Nelson [2], the problems associated with
repeated roots have not been adequately addressed.

The problem of repeated frequencies, or identical frequencies
with different mode shapes, occurs in many physical situations. The
most common circumstances under which multiple eigenvalues occur in
engineering are cases where system symmetry exists, such as structures
with two or more planes of reflective or cyclic symmetry (see Figure
1) or axis symmetry (see Figure 2).

It is also possible for repeated or closely spaced eigenvalues
to occur when physical symmetry is not present, such as with classical
wing flutter when the first bending and twisting frequencies coalesce.

CoINCIDENTAL PARAMETERS (E.G. WING TwIST/BENDING FLUTTER)

SYMMETRY: REFLECTIVE, CYCLIC, AXISYMMETRY

SYMMETRICALLY SUPPORTED Mass Ri6HT CIRCULAR CYLINDRICAL SHELL
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TECHNICAL BACKGROUND

Assume [A] and [B] are symmetric n x n matrices and /\; is a
repeated eigenvalue with m+l distinct orthogonal eigenvectors. Then
{ZL } is also an eigenvector corresponding to 7\( where

m
. = a . X . - = X q
{z ¢} go X, (X, 51 = (KIS
and | |
r |
= X X ¢ e e e .. X,
[X] [ [¢ IL'-H lL+YV\:|
SYMMETRIC EIGENVALUE PROBLEM ( (AT - X;[B1) {x‘.} = {0}
ORTHONORMALI ZATION {x;} T [B] {x} = &;
[4 J i)
MuLTIPLE EIGENVALUE A RepeaTs M + 1 TiMes
CORRESPONDING EIGENVECTORS {xc,' ,[x £+1}1 ,lx S+ M]
™M
NONUNIQUENESS OF EI1GENVECTORS [Z-[} = Z X {x. ’ = [X]fo‘1
- L) ct) 1 S
o |
[X]: )'(L‘ )|(i+1|||||X'k+M
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FRICTIONLESS PARTICLE IN A SHALLOW ELLIPTIC DISH
PHYSICAL INTERPRETATION

A simple physical interpretation of repeated eigenvalues was
presented by Crandall [3 ] in which he considered a shallow elliptical
bowl in which a frictionless mass particle is allowed to slide in the
bottom of the bowl (left figure). The eigenvalue problem for this
system consists in determining the paths and frequencies of
back-and-forth motion in which each motion is repeated on the same
path. The natural mode solution is obviously along the major and
minor axes of the ellipse.

Next imagine that the elliptical bowl is gradually transformed
into a spherical bowl (right figqure). The eigenvalues will approach
one another and any straight path, through the bottom of the bowl, is
equally a natural mode. Thus, when m+l eigenvalues coalesce, there is
an infinity of mode shapes composed of a linear combination of the m+1
dependent, but somewhat arbitrary, basis modes.

Minor Axis Any Diametral Path |s A
Mode Path N atural Mode

Elliptic Dish - Unique Modes Spherical Dish - Nonunique Modes

Natural Frequencies Coalesce As D ish Becomes Spherical

Distinct Mode Shapes Vanish As Ellipticity Disappears
Crandall (ref, 3)
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MODAL GRADIENT EQUATIONS PRESENT AN ENIGMA

The modal sensitivity equations for a small change in a typical
parameter, R, upon which certain matrix elements of [A] and ([B] depend,
are well known and summarized below. The problems are that they
cannot be easily interpreted for the repeated eigenvalue problem since
fx¢ } is not unique, and matrix ([A] - K;_ [B]) is not of order n-1
but lower (i.e., n-(m+l)) depending on the multiplicity, m, of
eigenvalue A;

( )'= oC )
J R

X, =[x£]T([A] C- A 0B1 ) fX}

CIAT- ADB1 ) {x/) - [F.]

——
T
~
~——
]
I
~~
(]
I
—
1
>
~,
[ |
o]
—)
-
e
>
| —
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INTERPRETATION PROBLEMS
There are ambiguities agsociated with the gradient equations
sincefxéf is not unique and *é depends upon which{Xi} is chosen. 1In
addition, the rank of ([A] - A; [Bl1) is not n-1, but lower.

Therefore, inclusion of the derivative of the normalization condition
alone is not sufficient to uniquely determine{XéQ

WHICH [xil SHouLD BE USED? Is[XJDIFFERENTIABLE IN R?
Use oF DIFFERENT{XC} WILL YIELD DIFFERENT RESULTS.

RANK OF ([A] - Xg[B])Is Too Low To UNrqueLy DETERMINE {le} ;

WHicH ADDITIONAL EQUATIONS SHouLD BE UseD?
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REPEATED FREQUENCY SENSITIVITY EQUATION

To determine how the eigenvectors are perturbed by the
infinitesimal change in R, we postulate an aribtrary vector {Zl: }
which is linearly composed of all the ix/' I« / = ¢, ¢ +1, ..,
(+m) and premultiply the eigenvector 9gradient equations by the
transpose of all the eigenvectors corresponding to A;

This yields an auxiliary matrix eigenvalue equation in ;\';' '
which is of order m+l, the solution of which defines the specific
eigenvectors, through the eigenvectors [ o (¢ )}, affected by the
change in parameter R.

LeT {ZL'J = g °‘c+J[xi+j} =[X}{°‘}

1=0

([A) - A¢[B]) {ZLz = {sz - C [A] 'Ai[Bl),(Zif

[X]7 ] - 2081 ) = [o]

(o} ®[]{f - A x|

[2]" (F. @]

(A" - x.(8] ") [x]

~~

[0] = [x]"

(M+1)x(M+1)
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PHYSICAL INTERPRETATION

Solution of the (m+l) eigenvalues and eigenvectors of the[D]
matrix will yield the m+l gradients of A as well as the eigenvectors
{Zai to which they correspond. The figure below displays how the
eigenvalues coalesce for a particular value of the parameter R and
also shows how they correspond to different gradients. In general,
there will be as many derivatives as there are curves intersecting at
a particular parameter value R,

Mo+l [D] {od = A/ {)
SOLUTIONS
A¢
‘li+l
;\ ‘Ai+l l
l
?Ai :
R

!
NoTE: THERE ARE Two A; MWHERE A; COALESCES WITH A/

1
DETERMINATION OF A; AND CORRESPONDING {<X}

UN1QUELY DETERMINES MODE FOR GRADIENT SOUGHT
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PROPOSED SOLUTION PROCEDURE: OVERVIEW

The solution procedure proposed is an extended version of
Nelson's method for non-repeated roots. The method maintains the
original matrix bandwidth while eliminating m+l equation redundancies
in the original eigenvalue system.

The equations to be eliminated are determined by examining each
eigenvector which corresponds to the eigenvalue whose gradients are
desired, and establishing which elements are the maximum for each
vector. These then correspond to which m+l rows of ([A] - A [B])
should be considered as redundant. If the maximum elements of any two
eigenvectors correspond to the same row, then it is necessary to go to
the next smaller element until a set of m+l equations for removal is
obtained.

Rather than eliminate these rows and upset the system
bandedness, we propose to extend Nelson's ideas by =zeroing out the
corresponding element of {Fj { and then solve for iVJ i.

Basep UpoN MAXIMuM ELEMENTS OF{Z;};{Z £+1},...,{Z i+M}

Zero-0uT M+l Rows anp Corumns of ( [A] - A; [B])

ZERO-0UT M+]1 ELEMENTS FROM {FJ-} PN N A R &

SoLVE: ¢ [AT-A[B]) {VJ—} = {EJ}
NoTE: ( [A] - N[B] ) Has Same Banowintv as ( [Al - A.[B] )
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SOLUTION PROCEDURE: AUGMENTATION OF EQUATION

The process described on the previous page yields a solution
vector {Vj; } with m+l zeroes. To this we append the m+l eigenvectors
iZ i with appropriate constants C j,. This combination is then
substituted into the derivatives ©of che m+l orthonormalization
equations and the (m) additional optional equations to uniquely

determine the m+l constants Cj e
A

INTRODUCE M+1 ADDITIONAL EQUATIONS:

;78] fz:}- Sep) =0

L

i’j =l: £+19 [+zgcoos l:+m
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SIMPLE EXAMPLE: BASIC DESCRIPTION

As a very simple application of this procedure consider a
weightless straight bar of length L with end masses supported by
linear springs. As the spring stiffnesses and masses approach one
another, so do the two system frequencies. Thus, depending upon the
method by which the normal modes are obtained, the mode shapes may
vary. For the mode shapes presented below, either both masses vibrate
simultaneously up and down together {xll, or in opposition, {xz}.

-k, Ky 8L
For ky =k, =k s mo=m;zom
A = A = k
1 2 o
y 1 1 y 1 1
RIS l*z(”:'H
L6 1 Zm 0 18, yam 2
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SIMPLE EXAMPLE: NORMAL MODES

If we follow the procedure outlined earlier, and compute the
system frequency gradients with respect to changes in m we obtain
These modes are associated with motions

moves.
2

normal modes {Z
for which only m1 moves,

t and {Z
%nd motions for which only m

P 0
d M

K 1 -1 O(l = A ! dl}
) ZMZ -1 1 X, °(25

+ o (1)

1 lXU 2

L
o (2 1X1}+a2(1> ixz}ﬁ_—— %i}
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SIMPLE EXAMPLE: EIGENVECTOR GRADIENTS

Following the computation procedure outlined earlier, the

eigenvector gradients, {Z'li and {Z'2}, for changes in m, are the null

vector and the value of ;9{22}/'3 m, shown below.

{le} = Cq {Zl} + Cq,p {Zz} ={ g], 1.E, {Zl} NOT AFFECTED BY M, CHANGE

{Zzl} =

I
(s
n
~A
N
[
——
+
()
~N
n
P,
~
N
~a—
f
o
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USE CAUTION WHEN WORKING WITH THE TOTAL DIFFERENTIAL

ST [
d{de j= 5 4%
g

fo '}

(D—

d¢0)% __\‘_._ Di‘bc:”} dy +

9 he.

d{qé:)}—— J

2 Fy

¢

/ 0.}

€N

')_{___.__‘.t): ,} d ‘”b

o )"b

o

THe TotAL DiFFerentiAL May Not Exist Even THoueH THE PARTIAL DER1vATIVES Do,
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CONCLUSIONS

The coordinate system and mode shapes initially selected for
this example gave little physical insight regarding how the initial
system would decompose due to a change in m,. Yet, this example
yields a simple demonstration of the insight tozbe gained by following
the proposed procedure. Thus, it 1is seen that the proposed
mathematical procedure automatically yields m+l distinct gradients for
repeated frequencies and m+l distinct modes, without requiring user
dependence.

The computational efficiencies suggested by Nelson3 have been
expanded. These include: maintaining system bandwidth and
consideration of only the m+l repeated root frequencies.

E1GENVALUE GRADIENTS FOrR REPEATED FREQUENCIES
GENERALLY YIELD MuLTIPLE DisSTINCT VALUES

EFFIcIENT COMPUTATION OF EIGENVECTOR GRADIENTS
ForR REPEATED FREQUENCIES 1S POSSIBLE

1.E. BANDWIDTH MAY BE MAINTAINED
MopAL EXPANSION IS NOT NECESSARY

BuT, MusT INTRODUCE MoDAL ORTHOGONALITY CONDITIONS IN
AppITION TO NORMAL1IZATION CONDITION

Exercise CauTioN WHEN Usine A ToTAL DirFFeReNTIAL WHicH 1S A COMBINATION OF
ParRTIAL DERIVATIVES FOR REPEATED FREQUENCIES.
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ABSTRACT

A method is developed for sensitivity analysis and optimization of nodal
point locations in connection with vibration reduction. A straightforward
derivation of the expression for the derivative of nodal locations is given,
and the role of the derivative in assessing design trends is demonstrated.
An optimization process is developed which uses added lumped masses on the
structure as design variables to move the node to a preselected location;
for example, where low response amplitude is required or to a point which
makes the mode shape nearly orthogonal to the force distribution, thereby
minimizing the generalized force. The optimization formulation leads to
values for added masses that adjust a nodal location while minimizing the
total amount of added mass required to do so. As an example, the node of
the second mode of a cantilever box beam is relocated to coincide with the
centroid of a prescribed force distribution, thereby reducing the
generalized force substantially without adding excessive mass. A comparison
with an optimization formulation that directly minimizes the generalized
force indicates that nodal placement gives essentially a minimum generalized
force when the node is appropriately placed.
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INTRODUCTION

The current trend in engineering design of aircraft and spacecraft is
to incorporate in an integrated manner various design requirements and to do
so at an early stage in the design process (refs. 1, 2). Incorporation of
vibration design requirements is one example of this. Work in this area is
ongoing in the Interdisciplinary Research Office at the Langley Research
Center, particularly for vibration reduction in rotorcraft.

In helicopter rotor blade and fuselage design, stringent requirements
on ride comfort, stability, fatigue life of structural components, and
stable locations for electronic equipment and weapons lead to design
constraints on vibration levels (refs. 3-5). Some of the methods previously
used to control structural vibration in rotor blades include pendulum
absorbers (ref. 6), active isolation devices (ref. 7), additional damping
(refs. 5, 8), vibration absorbers which create "anti-resonances" (refs. 9,
10), and tuning masses to place frequencies away from driving frequencies
(refs. 5, 11=14). Efforts to incorporate the above concepts for vibration
reduction in systematic optimization techniques are described in references
10, 15-19. References 20, 21 contain surveys of applications of
optimization methods for vibration control of helicopters.

The objectives of this paper are to develop and demonstrate the concept
of nodal point placement and develop a mathematical optimization procedure
based on this concept to reduce vibration. An important ingredient in the
optimization procedure is the derivative of the nodal point location with
respect to a design variable. This derivative quantifies the sensitivity of
a nodal location to a change in a design variable. The sensitivity
derivative of the nodal location is derived in this paper. The equation
involves the derivative of the vibration mode with respect to the design
variable and the slope of the mode shape at the nodal point and is easily
implemented in a vibration analysis program using available or easily
computed quantities. Analytical results are presented for the sensitivity
derivatives for a beam model of a rotor blade and compared with finite
differences for an independent check. The sensitivity derivatives have been
employed in an optimization procedure for placing a node at a specified
location by varying the sizes of lumped masses while minimizing the sum of
these masses. Optimization results are shown for placement of a node at a
prescribed location on the beam model.

Recently, the concept of "modal shaping" has been proposed as a method
to reduce structural vibration, especially in helicopters (refs. 3, 4). In
this method, vibration modes of rotor blades are altered through structural
modification to make them nearly orthogonal to the air load distribution -
thus reducing the generalized (modal) force. This paper deals with the
concept of nodal point placement which is related to modal shaping and
consists of modifying the mass distribution of a structure to place the node
of a mode at a desirable location. Typical candidates for nodal point
placement are locations where low response amplitude is required such as
pilot or passenger seats, locations of sensitive electronic equipment,
weapon platforms, or engine mounts. Nodal point placement also has the
potential for reducing overall response by placing a node at a strategic
location of a force distribution to reduce the generalized force.




MOTIVATION FOR DERIVATIVES OF NODAL POINT LOCATIONS

A method has been developed for calculating the sensitivity derivatives
of node locations (points of zero displacement on a mode shape). These
derivatives are used in optimization procedures to place nodes for the
purpose of reducing vibrations. There are two general cases of nodal
placement (figure 1). The first case places a node at a point where low
response is desirable such as the pilot or passenger seat, the location of
sensitive electronics, or weapon platforms, for example. The second case
places the node at a point to minimize the generalized force. By placing
the node at certain locations, the major components of the force vector are
cancelled out and, therefore, the generalized force is reduced. Two
possible candidates for placement of the node in this case are the point of
maximum force or the centroid of the force. An example of the latter will
be shown. The derivatives of nodal locations, besides being used in
optimization procedures to place nodes, provide valuable information about
the effect of a design change in moving the location of the node.

® Application of nodal placement

Points desirable for low response
® Pilot or passenger seat

e Location of sensitive electronics
e Weapon platform

Minimize generalized force, tDTF

@ Design application

Tells which design variables are most effective in
changing nodal location

Figure 1
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DERIVATIVES OF NODAL POINT LOCATIONS

The derivation of the analytical expression used to calculate the
derivatives of node point locations is developed for an arbitrary design
variable, v. The modal deflection normal to the length of a one-dimensional
structure is denoted u(x,v) and represented by the solid line in the sketch
of figure 2. The deflection, u and the nodal point location denoted by
X, (v) are both functions of a design variable. When the design variable is

perturbed, the deflection shape changes to the shape shown by the dashed
line. The derivative of the nodal location is obtained by expanding the
perturbed mode in a Taylor series about the nominal nodal point. Neglecting
the higher order terms,
u(xrl + dxrl ,V + dv) = u(xn ,V) + g% dxn + %% dv (1
X,V X,V
n n
The term on the left side of the equation and the first term on the right
are deflections at the nodal points of the perturbed and nominal mode
shapes, respectively, which are zero. Since X, is a function of v, it

dx
follows that dxn = -H%—-dv. Therefore, from (1)
dx
ou u au n u
g{ an + 5\’" dv = ~a~}'{- av + —37 dv = 0 (2)
X L,V X_ ,V X,V X,V
n n n n

Noting that dv is arbitrary and solving for dxn /dv leads to the formula for

the nodal point derivative

@, [ /v

= 3u/9x

dv
The two ingredients in the formula are du/dv, the derivative of the mode
shape at the nodal point and du/9x, the slope of the mode shape at the nodal
point. The value of 3u/93x is obtained from the nominal mode shape; and the
value of Ju/dv is obtained by Nelson's method (ref. 22) which will be
described in the next figure.

(3)

X v
n'

-————— X +_n dV

Figure 2
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DERIVATIVES OF EIGENVECTORS - NELSON'S METHOD *

A free-vibration problem with no damping is governed by equation (4) of
figure 3 where K is the stiffness matrix, M is the mass matrix, ¢ is the
eigenvector, and A is the eigenvalue (square of the circular frequency).
The eigenvector is normalized such that the generalized mass is unity (eq.
(5)). By taking the derivative of equation (4) with respect to a design
variable v, equation (6) is obtained. Because this equation is singular, a
direct solution for %% is not possible. However, the general solution to
equation (6) is expressible in the form of equation (7) as the sum of a
complementary solution, ¢ and a particular solution, Q. The particular
solution is found by setting one component of the eigenvector derivative
equal to zero and deleting the corresponding row and column from equation
(6) and solving for the remaining components. The constant C is found by
taking the derivative of the normalization condition in equation (5) and
substituting equation (7) into the resulting expression.

oK - Mo =0 (4)

1
od Mo =1 (5)
® Take derivative of Eq. (4)
_ 0D _ dA _ 3K oM
{K = A M} Y Mo v O + AW(D (6)

@ Solution. g—f,’ = Q+Co )

®C is determined from derivative of Eq, (5)

2 Q{T M Jigl = - Q)T Jiﬁﬂ_
ov oV

oC=-o'mg- Lo M,
2 ov

*Ref. 22
Figure 3
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DERIVATIVES OF NODAL LOCATIONS FOR SPINNING STRUCTURES

For calculating derivatives of nodal locations of spinning structures
such as rotor blades, a modification of the previous development is
necessary. The basic expression for the nodal point derivative is
unaffected (see eq. (3)), and Nelson's method is still used to calculate the
eigenvector derivative. However, the details of Nelson's method when
applied to a spinning structure are different because the eigenvalue problem
has additional stiffness terms (refs. 23, 24). As shown in figure 4, the
new terms are KC’ the centrifugal stiffness matrix and KD’ the differential

stiffness matrix. KCcontains products of masses m and angular velocity Q.
KD contains stresses associated with the extension of the spinning

structure. (Details may be found in refs. 23 and 24.) Presently, the
derivative of the stiffness matrix is calculated by finite differences, but
methods for calculating this derivative analytically are being investigated.

® Stiffness matrix for spinning structures

K= K. + K. + K

E C D
.KE = elastic stiffness matrix
° KC = centrifugal stiffness matrix = (m, Q)

° KD = differential stiffness matrix = KD(o)

® Compute b(KE + KC + KD)/ dv by finite differences

® Plans are to develop derivative of KE + KC + KD analytically

Figure 4
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SENSITIVITY DERIVATIVE TEST PROBLEM

The example problem used to test the sensitivity analysis is a
cantilever beam representation of a rotor blade developed in reference 25
and shown in figure 5. The beam is 193 inches long and is modeled by ten
finite elements of equal length. The model contains both structural mass
and lumped (non-structural) masses. The beam has a box cross section as
shown in the figure. Additional details of the model are given in reference
26. There are eight lumped masses at various locations along the length of
the beam and the values of the masses are the design variables. The
derivatives of the nodal location with respect to these lumped masses are
computed for the second mode. The second mode is chosen because it is a
prime contributor to the vibrations transmitted from the rotor to the
fuselage (ref. 3).

@ @ ©) ® ® @ @ O, @ Element numbers

2 3 4 5 6 7 8 9 10 11 Grid point numbers

Finite element model

-
NN

Cross-sectional detail

e Compute derivatives of node location for second mode

e Design variables - masses at grid points

Figure 5
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RESULTS OF SENSITIVITY ANALYSIS

Derivatives of the nodal point location with respect to the lumped
masses for the second mode were calculated using equation (3). The
sensitivity analysis included the model with spin (Q=425 rpm), as well as
without (9=0). For an independent check on the implementation of equation
(3), the derivatives were also calculated by forward finite differences with
a step size of .1 percent. The sensitivity results are shown in figure 6.
The two methods generally agreed within one percent. Examination of the
table shows both positive and negative values of the derivatives. A
positive value indicates that an increase in the mass moves the nodal point
to the right of the nominal location and a negative value indicates that an
increase in mass moves the node to the left. The derivatives show, for
example, that changes in the masses at grid points 10 and 11 are the most
effective ways (per unit mass) to move the node. The derivatives for the
spinning model follow the same basic trends as the non-spinning model even
though the derivatives are somewhat different.

dxn/dv (inch/lbm)

Q=0 Q =425 rpm
Finite . Finite
difference Analytical difference

Mass no. | Analytical

-0. 028 -0. 028 -.050 -. 050
-0. 088 -0. 088 -. 129 -. 129
-0.231 -0.230 -. 261 -. 261
-0.236 -0.236 -. 221 -.221
-0.166 -0. 165 -.096 -. 096
-0. 004 -0. 004 . 062 . 062
1 0.309 0. 309 .280 .280
11 0.828 0.826 118 AT

O VoO~NON B W

Figure 6
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OPTIMIZATION TO PLACE NODES

The optimization problem is to place the node at a desired location by
varying the magnitudes of lumped masses while minimizing the total lumped
mass. CONMIN, a general-purpose optimization program (ref. 27), is utilized.
The formulation of the problem consists of defining an objective function
(the quantity to be minimized); the constraints (limitations on the behavior
of the model); and the design variables (the parameters of the model to be
changed in order to find the optimum design). The optimizer requires
derivatives of both the objective function and the constraints. The
formulation for this problem, summarized in figure 7, is as follows: The
objective function, f, is the sum of the lumped masses. The constraint, g,
which must be negative or zero for an acceptable design, expresses the
requirement that the nodal point X be placed within a distance § from a

desired location xo. The design variables consist of the sizes of the

lumped masses. Constraints on the largest and smallest acceptable values of
the design variables are optional. These values are arbitrarily set in this
case. The derivatives of the objective function with respect to the design
variables are all equal to 1.0 and the derivatives of the constraints are
equal to positive or negative values of the nodal point sensitivity
derivatives calculated from equation (3).

® Problem: Place node X within d of X, by varying masses Mi

® Objective function, f= Z N\i
i=1

® Constraint, g = |xn - X 50

ol—

® Design variables, Vi = N\i
® Use CONMIN

® Derivatives of objective function: bf/avi =10

® Derivatives of constraints: ag/avi = ibxn/avi

Figure 7
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OPTIMIZATION TEST PROBLEM

The model used in the optimization procedure is shown in figure 8 and
is the same beam structure of figure 5. The node for the second mode is to
be placed within & = 1.0 inch of X, = "164 inches. The location X, is

chosen because it is the centroid of a representatlve air load distribution
given in reference 3 for a rotor blade. In reference 26, it is shown that
the centroid of a load distribution is a desirable location for the node.
The design variables are the masses at joints 9, 10, and 11 having initial
values of 5.21 1bm, 6.55 1lbm, and 6.60 1lbm, as given in reference 25 - a
total of 18.36 pounds. The initial location of the node is 154.7 inches.
The upper and lower bounds on the design variables are 50.0 and 0.5 1lbm,
respectively.

MIM M3

9@ an o 4

4

. 193 in.

AN

e Desired node location: X = 164.0 in.
® Allowable distance: 6 = 1.0 in,

e Design variables: M1 M2 M3

e Upper bounds on design variables: 50 Ib

e lower bounds on design variables: 0.5 Ib

Figure 8
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CONVERGENCE OF OPTIMIZATION PROCEDURE FOR NODAL LOCATION

Initially, the constraint is not satisfied since the node is nine
inches from the desired location (instead of one inch). The optimization
history is shown in figure 9. The optimizer initially adds mass to bring
the nodal point to within one inch of the desired location. After ten
cycles, the constraint is satisfied, but the mass is increased to about 36
lbm. For the remainder of the cycles, the optimizer concentrates on
minimizing the total mass by shifting mass among the three locations,
finally reaching the optimum design with a mass of 24.45 1bm.

10 ~
Constraint - Nodal location

lxn -xol (in.) 5 |-

/_ 0 "% =1
O | | | | ]
5 10 15 20 25
Cycle
30 -
20
ZMi (1bm)
10 - Objective function - sum of masses
0 ] | | | |
5 10 15 20 25
Cycle
Figure 9
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INITIAL AND FINAL DESIGN FOR NODAL POINT OPTIMIZATION

The optimization procedure converged to the final design shown in
figure 10 in which the masses are 0.5 lbm, 3.70 1lbm, and 20.25 1lbm, for a
total of 24.45 1bm, and the nodal point is located at 163 inches.
Basically, mass was shifted from the two inboard locations to the tip where
mass is most effective in moving the nodal point. For example, the mass at
grid point 9 is reduced from 5.21 1lbs to 0.5 1lbs, while the tip mass is
increased from 6.6 1lbs to 20.25 1lbs. Excessive addition of mass is avoided
(only 6 additiondl pounds were needed) because of the effectiveness of
relocating mass to the tip.

X, = 164.0 in. 6= 10in.
I nitial Final
M1 (lbm) 5.21 0.50
M, (lbm) 6. 55 3.70
M3 (Ibm) 6. 60 20, 25
Mror bm 1 18,36 24.45
Nodal
location 154, 7 163.0
X _(in,)
n
Figure 10




GENERALIZED FORCE STUDY

One of the potential applications of nodal point placement is the
reduction of overall vibration response by generalized force minimization.
A study is performed in which the generalized force for the second mode is
calculated using the force distribution F, shown in figure 11. This

generalized force is ¢2T F where ¢, is the mode shape from the final design

based on the nodal point placement optimization. The force distribution in
figure 11 is taken from reference 3 as representative of the air loading on
a rotor blade and is adjusted so that the centroid is near the location of
the nodal point; i.e., (164 + 1) inches. Locating the node at the centroid
results in a low value for the generalized force (ref. 26). To assess how
well nodal placement reduces generalized force, the generalized force from
node placement optimization is compared with the value obtained when the
generalized force is directly minimized (ref. 26).

Centroid of distribution at x/L = .85 (164 inches)

Air load
(Ib/in.)

L l<:5=:’f'—————ff 1 ] 1 | 1

0 .2 A .6 .8 1.0
Nondimensional distance along blade, x/1

Figure 11

227



DESIGN CHARACTERISTICS FROM NODAL POINT OPTIMIZATION

Figure 12 contains design variables, total mass, generalized force, and
nodal point locations for three designs: the initial design, the final
design from nodal placement, and the final design from the direct
minimization of the generalized force (ref. 26). The nodal placement
procedure is very effective in minimizing the generalized force - giving
10.8 1bf, compared to 10.0 1bf from the direct method when both were started
at ‘a design with a generalized force of 20.8 1bf. The direct minimization
procedure, while not dealing directly with the nodal location, nevertheless
places the node essentially at the same point as the nodal placement design:
163.8 inches versus 163.0 inches.

Nodal Direct
I nitial placement minimization
Generalized force (1bf) 20,8 10.8 10.0
Nodal location X (inch) 154,70 163.0 163. 8
M1 (1bm) 5.21 0.50 0.50
N\2 (1bm) 6.55 3.70 1.75
My (Lom) 6. 60 20,25 22,20
18. 36 24,45 24.45
N\TOT (Ibm)
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CONCLUDING REMARKS

This paper has described sensitivity analysis and optimization methods
for adjusting mode shape nodal point locations with application to vibration
reduction. The paper begins with a derivation of an expression for the
derivative of the nodal location with respect to a design variable.
Sensitivity analyses were performed on a demonstration problem which
consisted of a box beam model of a helicopter rotor blade. In these
analyses, the derivatives of the nodal location for the second mode with
respect to the magnitudes of lumped masses on the beam were calculated. It
was shown that these derivatives gave useful information about the effect of
the masses on the nodal location and indicated which masses were most
effective in moving the nodal point. Next, the paper described an
optimization procedure to place a node at a prescribed location by adjusting
the magnitudes of lumped masses while minimizing the sum of these masses. A
general-purpose optimization program was used and the nodal point
derivatives were a key ingredient in the procedure. This optimization
procedure was demonstrated in an example where the nodal point for the
second mode of a cantilever beam model of a rotor blade was placed at a
location close to the centroid of a force distribution. The procedure was
successful in moving the node to the desired location requiring only six
additional pounds of lumped mass on a 193-inch beam that weighed 117 pounds.

Finally, to demonstrate the potential for nodal placement to reduce
vibration, the generalized force for the second mode was calculated and
compared to the minimum generalized force obtained by a separate
optimization procedure. It was found that the nodal placement procedure
gave a generalized force which was very close to the minimum. The results
in this paper suggest that adjusting the mode shapes of struc¢tures by
relocating nodal points has potential for reducing both overall and local
response levels in vibrating structures.
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ON COMPUTING EIGENSOLUTION SENSITIVITY DATA USING FREE
VIBRATION SOLUTIONS

B. P. Wang
Department of Mechanical Engineering
The University of Texas at Arlington
Arlington, Texas

SUMMARY

A simplified method of computing eigensolution sensitivity derivatives in
structural dynamics is developed in this paper. It is shown that if the elements
of stiffness and mass matrices associated with a design variable are homogeneous
functions of that design variable, then eigenvalue derivatives can be computed from
element strain and kinetic energies. Furthermore, if cross-mode energies are known,
eigensolution derivatives of modified systems can be computed approximately using
assume mode reanalysis formulation. A ten bar truss example is used to illustrate
the present formulations.

INTRODUCTION

The usefulness of eigensolution sensitivity derivatives in structural dynamics
research is well known. The sensitivity data can be used for approximate
reanalysis, analytical model improvement, assessment of design trend as well as
structural optimization with eigenvalue constraints. When applied to larger discrete
structural models, these applications typically require long and expensive computer
runs and usually the predominate contributor to the computing time was the
calculation of derivatives. Thus efficient eigensolution sensitivity analysis
procedures would be very useful in structural dynamic research. It is the purpose
of this paper to develop, under certain conditions, efficient eigensolution analysis
procedures using free vibration data.

The equations for computing derivatives of eigenvalues and eigenvectors for free
vibration of undamped structures were known for a long time. Only recently have
these methods been implemented in some general-purpose finite-element programs. In
this paper, a simple method is developed which can be used to compute the eigenvalue
derivatives for a large class of problems by exploiting the similarity between the
equations for eigenvalue derivatives and element strain and kinetic energies.
Furthermore, if the cross-mode element energy data are available, the approximate
eigenvector derivatives can also be computed using a truncated modal expansion
expression. The approximate second derivatives of eigenvalues can then be computed.
Additionally, with the cross-mode strain energy data, the eigenvalue derivatives of a
modified structure can be computed using assumed mode reanalysis formulation.
Numerical examples will be presented to illustrate the various formulations.
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EIGENSOLUTION SENSITIVITY IN STRUCTURAL DYNAMICS

The general problem is to compute the rate of change (or derivatives) of
eignevalues and eigenvectors with respect to design variables for the following
generalized eigenvalue problem in structural dynamics.

K¢=AM0o (1)

Much research has addressed this problem in the past two decades. A
comprehensive survey of literature can be found in a recent paper by Adelman and
Haftka [1]. The equations for first order eigenvalue and eigenvector derivatives
as well as second order eigenvalue derivatives are summarized below:

Eigenvalue Derivative:

aAR T 3K T oM

5z~ Poax % "M %5k % (2)
r r r

Eigenvector Derivative:

8(1)2 n
—X= 3 A... 0. (3)
er j=1 2ij 7]
where for £ # j
aZ
_ T % )
Z, =K - AQM (5)
__1,ToM
and fare T T 2% o % (6)

Second Derivative of Eigenvalues:

2
3 Az Sy s ¢T (822 8¢2 . BZ2 8¢2) -
9x 9x 2 2 '9x dx ox 9Ox
r’s r s s r
where
N ok, oM PMeam  Peoam A )
2 £'9x 9x 2 9x 9x ox 9x Ix 9Ox 2
r s r s s r r s

Note that in the above equations, the mode shapes are normalized to unit generalized
mass, i.e.

T =
¢2 M¢2 = 1.0
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For the eigenvector derivatives, if less than full modes are used, Eq. (2) is an

approximate expression. These will lead to approximate second order derivatives of
eigenvalues.

The above equations have been developed in the literature for some time. For
example, Equations (2) and (3) can be found in Fox and Kapoor [2] and Eq. (7) was
reported by Miura and Schmit [3]. It should be noted in passing that there are some
recently developed algebraic methods [4-5] which can be used to compute eigenvector
derivatives without using modal expansions.

The difficulty of applying the aforementioned equations appears to be the cal-
culation of derivatives of stiffness and mass matrices with respect to design vari-

ables. In the next section it will be shown that under certain assumptions, we can
circumvent the calculation of 9K/3x; and M/9x; in implementing these above equations.

SIMPLIFYING ASSUMPTIONS

In general, the system stiffness and mass matrices in Eq. (1) can be written as

ND
K=K + 3 K. 9)
c . i
i=1
ND
M=M + 3 M, (10)
c . i
i=1
where
KC = contribution to stiffness matrix due to structural elements that are to
remain constant during the design process.
MC = contribution to mass matrix due to the masses of the unchanged elements as
well as nonstructural masses.
Ki,Mi = contributions to stiffness and mass matrices respectively due to elements

controlled by design variable X, .
To develop simplified efficient methods for eigensolution sensitivity analysis,

the elements of the matrices Ki and Mi are assumed to be homogeneous functions of
design variables. That is the matrices Ki and Mi have the form

K

i
~
x
N
=t
=

(11)

i i i

M. .
i i i

1}
~
>
~—
H
=

(12)

ot ot

"n ”n . . . .
where K. and M. are constant matrices. Furthermore, define non-dimensional design

i i

parameters
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I B \
o = G (13)
i0
X, Y.
a, = (=) (14)
i X.
i0
Then
Bi o+ xi Bl i kS
K = () 7K = ) (%) K
i0
or
Ki = qa, Kio (15)
Similarly,
Mi = o, MiO (16)

where KiO and MiO are stiffness and mass matrices due to design variable X, at its
nominal value Xx. ..
i0
Based on the above assumptions, the derivatives of stiffness and mass matrices
with respective to design variables can be computed readily:

ok _ Ky : ?fi .

ox.  dx, dx. i0
i i i
or

8Ki Ei
X

5% K. (17
1

i0

Similarly, we can derive

o

oM _ Vi
9x. X, MiO (18)
i i

It should be noted that at the nominal design, o, = &i = 1. With these simplifica-

tions, the eigenvalue derivatives can be computed readily.

RATE OF CHANGE OF EIGENVALUES

Using (17) and (18) with a = ai = 1, the eigenvalue derivative, eq. (2) becomes
Yr

A Br T T
. x_ Oy Ko & - x_ Ay 0g Mg O (19)
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Define

_1.T

Vore =2 %9 Ko 9 (20)
_1, T

Torn =2 M0 9 Mo & (21)

Then Eq. (19) can be written as

oA B Y
2 -,k . _r
axr - 2(xr V2r2 X T2r£) (22)

r

Note that from Egqs. (20) and (21), V2r2 and TQrR can be interpreted as the strain and

kinetic energy respectively of elements associated with design variable X_.

Thus, given B_ and y _, the rate of change of eigenvalues can be computed from
the energies associated with this design variable. Since most general-purpose
finite-element codes provide element strain energy as an output option, one way to
implement (22) is to calculate VQrR and T2r2 by summing strain energy and kinetic

energy for all elements controlled by design variable X .

In the above formulation, we have made use of the form of the stiffness and mass
matrices, Egs. (11), (12). Not all structural elements can fit into these models but
some important cases do. Some of these are tabulated in Table 1.

Using Eqs. (15) to (18), it is possible to derive explicit equations for
eigenvector derivatives as well as second-order derivatives of eigenvalues in terms
of energies associated with various design variables. These are quite tedious and
have not been accomplished so far. In the following, we will discuss the special

case of Bi =Y.

EIGENSOLUTION SENSITIVITIES FOR THE CASE Bi =Y

For this special case, we can use chain rules to rewrite sensitivity derivatives

as:
oA 9A, da
2 = 2 r (23)
Ix o0 9x
r r r
90, 90, da
2 = 2 r (24)
ox a_ 9x
r r r

2 2
9 AQ o AR aar aus

ox Ox = JOx 9x OJx 9x
r s r ' s r s

(25)

, . . 2
Thus, it remains to find axg/aar, 8¢8A2/3ar and 9 Ag/aaraas. Note that
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ou = KrO (26)
r

M
r _

5a_ - Mro 27
r

Using Eqs. (26), (27) and replacing all x in Eqs. (2) to (8) by a« and &, and

r) xs S

making use of the orthogonality properties of normal modes
T _ . .
(p2 M¢j =0 if £ # j

as well as the linearity assumptions (Egs. (15) and (16)), we can derive, after
considerable algebraic manipulation, the following results:

8A2
50 - Corg (28)
r
8¢2 n
= = X 0. (29)
da i=1 2rjti
2
9 AQ 8A2 8A2 n
500 - 2lGa Core * 5@ Cosed) * 2 Cgpy Cogjl (30)
r s s 3=1
j*L
where
cerj = 2(v2rj - Tzrj) (31)
_1.T
VRrJ =2 % K, ¢j (32)
1, T
Torj T2 2 99 My 95 (33)
_ Czr'
Corj = % —n 24 (34)
£ J
T
= _ _ _Arf
Core =~ A (35)
2
It should be noted that V2rj can be considered as the '"cross mode" strain

energy, since it is the work done by the elastic force in jth mode (i.e. Kr¢j) moving
through displacement in the £th mode. Similarly, T2rj can be considered as the

"cross mode" kinetic energy. Thus, eigensolution sensitivity derivatives can be
computed readily when these energy terms become available.
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SENSITIVITY DERIVATIVES FOR MODIFIED SYSTEMS

In iterative analysis, we frequently require the eigensolution derivatives of a
system different from the nominal design. In these situations, assumed mode
reanalysis [6-7] appears to be very efficient. Let AK and AM denote the change to
stiffness and mass matrices, respectively. Then, in term of a;, we have

ND
AK = ‘Z (ai - l)Kio (36)
i=1
and
ND
AM = izl (ai - I)Mio (37)

Following the development in Ref. 7, the eigensolution of the modified system
can be computed approximately by solving the following reduced eigenvalue problem

Kq=AMgq (38)
where
= _ T
K=¢" (K + AK)®
= [Ag] + 2 (o - 1)K, (39)
M=([I]+2 (o -1) M (40)
where ¢ is the truncated modal matrix of the original system, and
K. =0 K. o (41)
i i0
Mo=¢' Mo (42)
i i0

Once (37) is solved, the eigenvectors of the modified system wi’ in terms of physical
coordinates, can be completed from

Y, = q; (43)

1

For modified systems, the eigenvalue derivatives, Eqs. (28) and (30) are still
applicable except V, . and T, . are now defined by

2rj Lrj
_1 Tx
V‘er =329 Kr qy (44)
1 T ~
== 4
Tory S22 9 M 9y (45)
and the eigenvector derivatives can be computed from
oY 9q
2 2
50 -~ ? 3a (46)
r r
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where

qu )
da
T

HMp

orj 9 (47)

j=1

(@]l

is as defined by (34) or (35) with V, ., T2rj defined by (44) and (45).

2rj Lrj

DISCUSSION

In Eq. (7), the second-order derivatives of eigenvalues are shown to be
dependent on eigenvector derivatives. In the present formulation, we can compute

32A2/3dr3ds Using Eq. (34) without the need to compute eigenvector derivatives

explicitly. Once the derivatives with respective to o's are known, chain rules can
be used to compute the derivatives with respective to design variables x's (Egs.
(23) to (25)).

NUMERICAL EXAMPLE

The assumed mode reanalysis sensitivity derivative formulation has been
implemented in a program which post-processes MSC/NASTRAN generated data. The first-
order sensitivity data have been applied to improve analytical model using measured
modal data [8] as well as synthesis of structures with multiple frequency
constraints [9]. Recently the second order derivatives of eigenvalues (Eq. (30))
has also been implemented.

A ten-bar cantilever truss structure, Fig. 1, is used to test the program. The
ten members are grouped into 4 design variables as indicated in Figure 1. Starting

with a uniform structure with cross sectional area 10 in2 for all design variables,
the optimal design program described in Ref. 7 is used to mode the first two
natural frequencies from 13.3 and 37.8 Hz to 16 and 39.3 Hz, respectively. This is
accomplished by a sequential linear programming formulation [7,9]. At each
intermediate design, the eigenvalue derivatives are computed using reanalysis
formulations. Table 2 defines the design history. Specifically, the designs at
iteration No. A-0 and B-0 are analyzed exactly using MSC/NASTRAN. Three iterations
are shown after each exact analysis. The eigensolution at designs A-1 to A-3 and
B-1 to B-3 are computed using assumed mode reanalysis formulations. Four modes are
used in each case. The first two natural frequencies are tabulated in Table 3.
Also shown in Table 3 are the corresponding exact frequencies. From Table 3, it can
be seen that the accuracy in frequency of assumed mode reanalysis formulation is
very good. Tables 4 to 7 summarize axl/al,axl/axz,axz/axl and 3A2/3X2,

respectively. The results of these tables indicate that the sensitivity derivatives
of modified system can be predicted quite accurately using the assumed-mode
reanalysis formulation.
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CONCLUDING REMARKS

General procedures for computing eigensolution sensitivity derivatives for a
class of problems have been proposed in this paper. Detailed formulations have been
carried out for a special case. It is shown that the eigenvalue derivative with a
design variable can be computed from strain energy and kinetic energy for that design
variable. Furthermore, when the cross mode energy terms are available, assumed mode
method can be used for eigensolution as well as associated sensitivity reanalysis.
This efficient formulation has proved to be very effective in synthesis of structures
with multiple frequency constraints [7,9]. Additionally, the present approach can
be implemented in a post-processor of any finite-element programs without the need
to modify the source code.

Since the current formulation provides an efficient approach for computing
second-order eigenvalue derivatives, it would appear that a second-order method for
structural optimization with frequency constraints could be implemented efficiently.
Finally, in view of the success of the formulation for the special case of Bi = Y5

further development for the general case of Bi # y; seems to be warranted.

SYMBOLS

system stiffness matrix
system mass matrix
eigenvector of the £th mode

b

eigenvalue of the £th mode

=

modal matrix of original system
cross-mode strain energy

H <e > XX
b
=
(SN
It

=
=
[SFN

cross-mode kinetic energy

rth design variable

modification in stiffness matrix
modification in mass matrix
eigenvector of the th mode of the modified systems

number of dof of the system
number of modes computed, n < N
= number of design variables

g7 F SRR
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TABLE I. - STIFFNESS AND MASS EXPONENTS FOR TABLE II. - DESIGN HISTORY OF
SEVERAL COMMON STRUCTURAL ELEMENTS TEN BAR TRUSS
Iteration
Element Design variable By No. Xy 2 X3 X,
Truss Cross 1 1 A-0 10.0 10.0 10.0 10.0
Membrane Thickness 1 1 A-1 12.76 8.88 5.0 5.0
Plate bending Thickness « 31 A-2 10.39 8.15 5.0 5.0
Beam bending Cross-sectional area 2 1 A-3 10.44 8.29 5.0 5.0
Beam bending Section area moment B-0 10.44 8.29 5.0 5.0
of inertia® 1 0.5 B-1 7.92 7.80 3.44 3.44
B-2 7.47 7.18 2.90 2.90
B-3 7.19 7.0 2.68 2.68
7‘Circular cross section
TABLE III. - COMPARISONS OF NATURAL FREQUENCIES
fl(Hz) fz(Hz)
Case Error Error
No. Approximate Exact (%) Approximate Exact (%)
A-1 16.88 16.60 1.71 40.16 39.03 2.88
A-2 15.96 15.78 1.14 39.85 38.99 2.19
A-3 15.99 15.82 1.10 40.00 39.11 1.27
B-1 15.90 15.89 0.11 40.23 39.87 0.88
B-2 15.99 15.98 0.03 39.98 39.44 1.37
B-3 15.99 15.99 0.00 40.00 39.33 1.71
TABLE IV. - COMPARISON OF 8A1/8x1 TABLE V. - COMPARISON OF 3A1/8x2
Case AN/ px AN/ ux Error Case IA/Ox 9A/9x Error
No. (%) No. (%)
Eq. (28) Exact Eq. (28) Exact
| A-1 418.9 454.0 7.7 A-1 216.7 294.6 26.5
3 A-2 494 .2 509.2 2.9 A-2 208.8 269.9 22.5
; A-3 495.8 505.9 1.9 A-3 202.3 262.7 23.5
‘ B-1 557.2 578.3 3.7 B-1 203.8 205.2 0.7
B-2 607.3 609.2 0.3 B-2 203.8 222.9 8.6
B-3 635.8 620.0 2.6 B-3 196.0 221.0 11.3
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TABLE VI. - COMPARISON OF 8)\2/8x1 TABLE VII. - COMPARISON OF 3A2/8x2

Case IA/ Ux AN/ Ux Error Case IN/dx OA/Ix Error
No. (%) No. (%)
Eq. (28) Exact Eq. (28) Exact

A-1 -812.2 -786.9 3.2 A-1 3337.9 3652.3 31.35
A-2 «747.4 -793.9 5.8 A-2 3678.3 2917.2 26.1
A-3 ~764.7 -805.2 9.0 A-3 3647.5 2876.9 26.8
B-1 -1232.3 -1247.8 1.2 B-1 3523.5 2928.3 20.3
B-2 -1387.7 -1320.2 5.1 B-2 3874.9 3038.0 27.5
B-3 -1482.4 -1435.7 3.2 B-3 4025.3 3043.1 32.3
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Modulus of elasticity = 104 ksi
Material density = 0.1 lbm/in3
Design variable x, = 1,2,3,4
X, = 5,6
X3 = member 7,8,9,10

Figure 1. Ten Member Cantilever Truss
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APPPLICATION OF A SYSTEM MODIFICATION TECHNIQUE TO
DYNAMIC TUNING OF A SPINNING ROTOR BLADE

C. V. Spain
PRC Kentron, Inc.
Aerospace Technologies Division
Hampton, Virginia

INTRODUCTION

An important consideration in the development of modern helicopters is the
vibratory response of the main rotor blade. One way to minimize vibration levels is
to ensure that natural frequencies of the spinnning main rotor blade are well
removed from integer multiples of the rotor speed. This report demonstrates a
technique for dynamically tuning a finite-element model of a rotor blade to
accomplish that end.

Rotor blades are an ideal subject for this type of analysis because a good
structural representation can be achieved with a single string of beam elements and
relatively few degrees of freedom. This means that the numerous system stiffness
and mass matrices required can be formed with relatively low central processor
time. The technique is valid, however, for larger and more complex models.

Because the tuning process involves the independent redistribution of mass and
stiffness, it is especially applicable to composite blade designs in which mass and
stiffness can be controlled independently by fiber orientation and the use of
nonstructural mass.

In the following sections, a brief overview is given of the general purpose
finite element system known as Engineering Analysis Language (EAL, ref. 1) which was
used in this work. A description of the EAL System Modification (SM) processor is
then given along with an explanation of special algorithms developed to be used in
conjunction with SM. Finally, this technique is demonstrated by dynamically tuning
a model of an advanced composite rotor blade.

This work was accomplished in support of the Interdisciplinary Research Office
of NASA Langley Research Center and the objectives were threefold. The first was to
establish a technique for tuning the natural frequencies of a spinning rotor blade.
The second was to demonstrate the usefulness of the EAL SM processor and to be able
to perform sensitivity and modification operations without dependence on additional
software. The final objective was to provide guidelines on advanced use of the SM
processor, i.e., use beyond the scope of currently available documentation.

ENGINEERING ANALYSIS LANGUAGE (EAL)

EAL is a general purpose finite element system produced by Engineering
Information Systems, Inc. It evolved from an earlier finite element program known

D
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as SPAR (ref. 2). In its present form, EAL consists of an Executive Control System
(ECS) in which the user can execute work flow logic, looping, branching and data
storage; and processors (similar to subroutines) which actually perform structural
and utility computations. Data input or computations result in data sets which are
stored in binary data bases or libraries which can be saved and referred to
indefinitely. The user communicates with and uses these features with input known
as runstreams.

Reference 1 is the current EAL reference manual, however, the older SPAR
reference manual (ref. 2) must be used for the SM processor. EAL version 209 was
used in this work.

EAL SYSTEM MODIFICATION (SM) FOR FREQUENCY MODIFICATION

The approach in modifying frequencies is to first specify a set of target
(required) eigenvalues corresponding to natural frequencies of the original model.
Parameters to be changed must be identified along with limits on acceptable changes.
Sensitivities of the eigenvalues to parameter changes must then be calculated. To
determine the actual structural changes, the statistical method described in
reference 3 is used.

SM operates in 4 phases as described below. The notation used here is
generally consistent with the SM description contained in reference 2.

Phase 1: The differences (ay) between the eigenvalue targets (Xy) and current
eigenvalues (X) are calculated. That is:

AX=X-X (1)

Phase 2: The_purpose of phase 2 is to approximate the sensitivities of eigenvalues
radians?/sec?) to specified changes in structural parameters which affect
stiffness and/or mass. These specified changes are known as unit parameters.
System stiffness change (AK) and mass change (AM) matrices are formed for each unit
parameter.

Because the original model eigenvalue solution is based on equation 2 below,
where \j is the ith eigenvalue and M, K and Yj are the system mass, system
stiffness and the ith mode shape, respectively, then the modified system can be
described by equation 3.

(hj+ax ) (M+aM) - (K+AK) (Y5 +4Y;4)=0 (3)

With some simplifying assumptions (i.e. changes in mode shapes and products of
the changes (a's) are very small), a reasonable approximation of eigenvalue
sensitivity is expressed by equation (4).

-y T oyl
A=Y TAKY oA Y TAMY (4)

The AK, AM and AXj are therefore the resuits of phase 2 which is computation-
ally the most costly phase because the system mass and stiffness matrices must be
formed for each unit parameter. Computations in the other 3 phases are trivial in
terms of central processor time.
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Equation 4 is valid only for a nonspinning structure and must be augmented for
a spinning structure as described later.

Phase 3: The actual structural changes needed to realize the targeted eigenvalues
are estimated based on equation (5) below which is an adaptation of the work
presented in reference 3.

-1
(P} ~[s,.] [NT]T{[NT] (s, [T [See]} N {ax (5)
where:

AP is a set of multipliers which reflects the total estimated structural
modifications needed in terms of corresponding unit parameters.

Spr  1s the covariance or weighting matrix. The diagonal terms, each
corresponding to the unit parameters in sequence, allow for the relative
weighting of those parameters. In this application, values are set at unity
and reset in later iterations if the parameter change limits are being

exceeded.
N is a matrix containing reciprocals of the current eigenvalues (1/rj).
T is the sensitivity matrix consisting of (axj's) with the rows corresponding

to the number of targets and the columns to the number of unit parameters.

See s the target tolerance matrix associated with acceptable variances of the
resulting eigenvalues from the targets.

AX is as described in equation (1).

The purpose of using this method is to achieve the targeted eigenvalues with
minimum change to the structure. Sy, can be used to influence how much a
particular unit parameter is changed. For example, a unit parameter which can be
changed with small penalty or is not likely to exceed the prescribed change limits
may be assigned an S, value of 1.0, whereas, a unit parameter which should be
changed as little as possible may be assigned a value of 0.1. Sge values normally
range from 0.0 (when a more exact attainment of the targeted eigenvalue is being
sought) to 0.1 (when only an approximate result is needed). As described in
reference 4, Sge values of 0.001 when most S., values are 1.0 normally provide
satisfactory results.

Phase 4: Each term of the AP matrix is compared to the parameter change limits data
set (described below). If any of the limits are exceeded, a APX matrix is formed
where the smaller terms (from AP or limits) are used. APX (AP if no limits were

exceeded) is then used to actually change the structural parameter data sets of the
finite-element model.

To test the results after the completion of phase 4, new mass and stiffness
matrices must be formed, and the original process of computing mode shapes and
frequencies is repeated. Normally, two or three iterations are sufficient to
achieve the desired results if reasonable targets, unit parameters and change
limits were selected. A complete iteration is the execution of phases 1-4 and
testing of the results by calculating frequencies of the modified structure.

249



Prior to executing SM, EAL data sets must be established defining the targets,
parameters, change limits, weighting and target tolerances. The EAL data set names
for these inputs are given below followed by brief descriptions.

TVAL - Target (desired) eigenvalues (radian?/sec?) preceded by mode sequence
numbers.

PARA - Each PARA data set is a group of changes (incremental element parameter or
rigid mass) expressed as a fraction of the existing value. Each data set
is then considered a unit parameter in SM computations.

SEE - Target tolerance matrix (Sge).
SRR - Covariance or weighting matrix (S,p).

DPLI - Parameter change limits (minimums and maximums) expressed as multiples (+ or
-) of unit parameters defined in the PARA data sets.

AUGMENTATION TO THE SM PROCESSOR

In this application, it was necessary to develop three algorithms to augment
the SM processor. These were implemented in the EAL Arithmetic Utility System (AUS)
processor. The first was to add the centrifugal stiffening effect of the mass
change (AM) matrices to the sensitivity matrix. The second was to revise the
weighting matrix (S,,.) when the original values resulted in too many values of the
change limits data set (DPLI) being violated by the AP matrix, thus causing
structural changes which were inadequate in achieving targeted results. The third
was to update the change limits after a complete iteration so that in the next
iteration, the change 1imits data set (DPLI), which is based on a fraction of the
current structural data set values, expresses the same engineering limits in terms
of mass or stiffness originally intended.

To correct the sensitivity matrix, an additional system stiffness matrix must
be formed for each nonzero AM matrix formed in phase 2. This matrix [aKC] reflects
the centrifugal effect of the spinning aAM and is formed using the AUS SPIN command
to calculate a centrifugal force matrix and the elastic and centripetal
contributions to stiffness. The Static Solution (SSOL) processor is used to
calculate deflections due to the centrifugal force. The resulting stresses are
embedded in the element state data sets by the GSF processor. Geometric
stiffness changes are then calculted using the KG processor. The elastic,
centripetal and geometric stiffness contributions are then summed to form [aKC]
which is used to finalize the sensitivities as follows:

- T
B rora™ i*Y5 [8KC] Yy (6)
where )i is given by equation 4.
The weighting matrix (S,.) is revised when limits (DPLI) are violated by

(aP). This is accomplished simply by multiplying each term of the (Sy,) matrix by
the ratios of corresponding terms of the APX and AP matrices. That is,
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S =1s :] 1 (7)
[ re :] NEW {:”r oD | 5P

which has the effect of reducing those S, terms corresponding to unit parameters
which are tending to be changed beyond their allowable limits in phase 3. This
process is repeated until the resulting APX matrix resulting from phase 4 does not,
in the judgement of the user, differ too greatly from the AP matrix. If this cannot
be achieved, the targets may be unachievable based on the selected parameters and
change limits.

The updating of the change limits (DPLI) for the subsequent iteration is
achieved by the following process which updates each term of the DPLI matrix to
retain the original engiﬂeering value.

“
L1oLp™2PXy LaoLp™2P%;
“1+F APX. TIFFoAPX, T T
[8PLI] " i 272 | (8)
YioLp72P%;
-I;?IK§*I-- «« (Etc for each parameterl

where:
APLINEw = New parameter change limits data set.

Liowpeloop = 0Vd lower Timits for parameters 1 and 2.

UtoLd = 01d upper limit for parameter 1.

APXy, APX2 = The final changes for parameters 1 and 2 produced in SM phases 3
and 4.

f1, f2 = The fraction used in defining a unit change for parameters 1 and 2 in
the PARA data sets. For this process to work, the fraction must be
uniform within a given PARA data set.

DEMONSTRATION

The finite element model (see figure 1) used in this report is based on a
preliminary design of an advanced composite main rotor blade developed by Mark W.
Nixon of the U.S. Army Aerostructures Research Group at Langley Research Center.
Table I gives the mass and stiffness properties of the baseline model which resulted
from a composite analysis program also developed by Mr. Nixon. Table II provides
the constraints or parameter changes which cannot be exceeded during the tuning
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process. These constraints are based on the designer's estimate of what changes can
be reasonably made without sacrificing the structural integrity or performance of
the rotor blade.

Additional constraints on the problem were that bending stiffness, if modified,
must be changed uniformly over large segments of the blade. The minimum allowable
mass moment of inertia about the hub was 19000 1b-in-sec? for autorotation
capability.

The objective of the tuning process was to minimize resonances caused when
flexible mode frequencies were too close to integer multiples of the rotor speed up
to eight per revolution (8P). The main rotor speed was 263 RPM (4.3833 HZ) and a
criterion of at least .2P separation was used. Table III lists the unacceptable
frequency ranges along with the natural frequencies of the original model and those
of the modified model following the first and second tuning iterations.

The overall process which was conducted interactively is depicted in figure 2.
Figure 3 contains the actual EAL runstreams used in the process. The runstreams in
combination with this paper and the references should provide adequate guidelines
for a new SM user.

Modes 1 and 2 are the flatwise and edgewise rigid body modes, and due to the
physics of a spinning rotor blade, cannot be significantly altered. Modes 3 through
7 were therefore targeted for modification. Due to blade twist, modes 3, 5, 6 and 7
are combined flatwise/edgewise bending modes whereas mode 4 is predominantly
torsion. It appeared reasonable to drive all of the bending mode frequencies to
approximately .25P below the nearest P multiple while allowing the torsion mode to
remain close to its original frequency. A study of the sensitivities indicated that
to drive frequencies in opposite directions would have required unacceptably large
changes in certain parameters. The selected target frequencies are listed in Tables
IIT and IV. Table IV also lists all of the SM inputs.

Results of two complete iterations are summarized in Table IIl and figure 4.
Figure 4 shows the ratio of calculated to target frequencies plotted against the
iteration number ("0" iteration being the original model). A ratio of 1.0 would
indicate complete convergence with the target value. The first iteration did not
move all of the frequencies to acceptable ranges (Table III) but did move all of
them towards the targets as shown in figure 4. The second iteration produced
frequencies out of the unacceptable ranges and very close to the targeted
frequencies. The total weight of the blade increased from 250.54 1b to 265.30 1b
and the mass moment of inertia about the hub increased from 19007.1 to 19780.7

1b-in-sect. Table V summarizes the final structural properties of the modified
rotor blade model.

CONCLUDING REMARKS

A sensitivity technique useful in minimizing vibrations associated with
helicopter rotor blades has been demonstrated. This and similar techniques can be
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effective in achieving desired performance with minimum change to the basic
structure. This is especially true for spinning structures because centrifugal
stiffening complicates the intuitive process of changing mass and stiffness to tune
natural frequencies.

An advantage of the process described in this report is that the modification
capability is built into the structural analysis program. This eliminates the need
for data transfer and development or use of external software.

The EAL System Modification processor has applications beyond that for which it
was originally produced and documented, as demonstrated here for a spinning
structure. As long as the equations for calculating appropriate sensitivities are
known, structural modification can be computed to achieve any targeted response such
as mode shapes, static deflections, stress and bending moments and loads due to
dynamic loads.
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TABLE I. - MODEL PROPERTIES

Lumped
inertia
Joint Lumped .about
Joint Location Mass z-axis
No. (z,in) (1b) {(1b-in-sec?)
1 0 0 .2415
2 16.1 0 .2700
3 18.0 0 .0585
4 20.0 0 .1230
5 26.2 0 .1860
6 32.4 0 .1860
7 38.6 0 .1905
8 45.1 0.32 .1551
9 51.5 0.645 .1161
10 58.0 0.645 .1161
11 64.4 1.93 L3474
12 96.6 3.22 .5796
13 128.8 3.22 .5796
14 161.0 3.22 .5796
15 193.2 2.415 .4347
16 209.3 1.61 .2898
17 225.4 1.61 .2898
18 241.5 1.61 .31395
19 257.6 1.61 .36225
20 273.7 1.61 .3864
21 289.8 1.125 .2700
22 296.2 0.645 .1548
23 302.7 0.645 .1548
24 309.1 0.32 .2068
25 315.6 0.35 .2580
26 322.0 0.35 .1280
tdgewise Flatwise Twist Cross Torsional
Stiffness Stiffness Angle Distributed Sectional Stiffness
Beam Joints El* Elpp* LE Down Weight Area GJ
Section Spanned (LBF-in?) (LBF-in?) (DEGR) (Lbs/in) In2 (LBF-in2)
1 1 -2 900.0 900.0 26.0 2.29 44 .44 100.00
2 2 -3 .0001 .0001 25.34 2.29 44,44 87.50
3 3-4 .0001 .0001 25.26 2.29 44 .44 87.50
4 4 -5 580.0 360.0 25.17 2.20 44.44 75.50
5 5-6 580.0 360.0 24.92 2.20 44,44 75.50
6 6 -7 580.0 360.0 24.66 2.20 44.44 75.50
7 7-8 580.0 298.0 24.41 2.60 44 .44 60.00
8 8-9 1260.0 25.89 24.14 0.35 78.84 17.125
9 9 - 10 1260.0 25.89 23.87 0.35 78.84 17.125
10 10 - 11 1260.0 25.89 23.60 0.35 78.84 17.125
11 11 - 12 1260.0 25.89 23.34 0.35 78.84 17.125
12 12 - 13 1260.0 25.89 22.01 0.35 78.84 17.125
13 13 - 14 1260.0 25.89 20.68 0.35 78.84 17.125
14 14 - 15 1260.0 25.89 19.35 0.35 78.84 17.125
15 15 - 16 1260.0 25.89 18.02 0.35 78.84 17.125
16 16 - 17 1260.0 25.89 17.34 0.35 78.84 17.125
17 17 - 18 1260.0 25.89 16.69 0.35 78.84 17.125
18 18 - 19 1260.0 25.89 16.03 0.35 78.84 17.125
19 19 - 20 1260.0 25.89 15.67 0.35 78.84 17.125
20 20 - 21 1260.0 25.89 14.70 0.35 78.84 17.125
21 21 - 22 1260.0 25.89 14.03 0.35 78.84 17.125
22 2 - 23 1260.0 25.89 13.77 0.35 78.84 17.125
23 23 - 24 1260.0 25.89 13.51 0.35 78.84 17.125
24 24 - 25 580.0 24.0 13.23 0.90 44 .44 60.00
25 25 - 26 580.0 24.0 12.77 3.3706 44 .44 60.00
Total mass moment of inertia about x axis (hub): 19007.1 1b in sec2. Total weight: 250.54 1b.

* Stiffness paramaters are with respect to a local reference frame which is rotated the amount of the twist angle
from the global frame shown on figure 1.
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TABLE II. - CHANGE LIMITS ORIGINAL PAGE IS
OF POOR QUALITY

Lumped Edgewise

Joint Mass Section Stiffness Flatwise
No. % No. % Stiffness
1 0 1 0 0

2 0 2 0 0

3 0 3 0 0

4 0 4 0 0

5 0 § 0 0

6 0 [3 0 0

7 0 7 0 0

8 0 8 +20) +10

9 -50 +100 9 +20 110}
10 -50 +100 10 +20 +10

11 -50  +100 n +20 +10 | *
12 -50 +100 12 +20 +10
13 -50 +100 13 +20 +10
14 -50 +100 14 +20 110J
15 -50  +100 15 +20 ) * +10

16 -50 +100 16 *20 +10

17 -50 +100 17 +20 +10 1
18 -50 +100 18 *20 +10

19 -50 +100 19 +20 +10 | *
20 -50 +100 20 +20 +10
21 -50 +100 21 +20 +10
22 -50  +100 2 *20 +10
23 -50 +100 23 +20) +10/
24 -50 +100 24 0 0
25 +100 25 0 0
26 +100

Minimum Allowable Mass Moment of Inertia About X Axis:
* Items in brackets must be changed uniformly as a group.

19000 b in sec?

TABLE III. - MODEL NATURAL FREQUENCIES
COMPARED TO UNACCEPTABLE RANGES

MULTIPLE, M UNACCEPTABLE RANGES, HZ (MPt.2P)
1 3.507 - 5.260
2 7.890 - 9.643
3 12.273 - 14.027
4 16.657 - 18.410
5 21.040 - 22.793
6 25.423 - 27.177
7 29.807 - 31.560
8 34.190 - 35.943

WHERE P=263rpm OR 4.3833HZ

FREQUENCIES
MODE TARGET ORIGINAL ITER 1 ITER 2
3 12.054 12.488* 12.067 12.030
4 16.0896 16.090 16.010 15.988
5 20.8208 22.460% 21.062* 20.928
6 23.0125 25.056 23.158 22.949
7 33.9708 36.368 34.326% 34.114

*IN UNACCEPTABLE RANGE
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SEQUENCE NO. MODE NO. EIGENVALUE
1 3 5736.3299 (12.05 HZ)
2 4 10219.9920 {16.09 HZ)
3 5 17114.1744 (20.82 HZ)
4 6 20906.7892 (23.01 HI)
5 7 45558.7855 (33.97 HZ)
UNIT PARAMETERS
(PARA SM n)
DATA LINEZ COLUMN3
n TYPE NO. FRACTION NO.
1 RIGID MASS 25 1 1703
RIGID MASS 26 1 1703
2 RIGID MASS 9 1 1703
RIGID MASS 10 1 1703
3 RIGID MASS 1 1 1703
4 RIGID MASS 12 1 1703
5 RIGID MASS 13 1 1703
6 RIGID MASS 14 1 1703
7 RIGID MASS 15 1 1703
8 RIGID MASS 16 B 1703
9 RIGID MASS 17 .1 1703
10 RIGID MASS 18 1 17103
11 RIGID MASS 19 .1 1703
12 RIGID MASS 29 1 1703
13 RIGID MASS 21 .1 1703
14 RIGID MASS 22 1 1703
RIGID MASS 23 .1 1703
15 RIGID MASS 2 1 1703
16 EDGEWISE STIFFNESS
(e, ) 8 10 23 .1 4
17 FLATWISE STIFFNESS
(EL,,) 16 To 23 1 6
18 FLATWISE STIFFNESS
(E1,,) 1015 1 6
TABLE V.
LUMPED
JOINT MASS BEAM
NO. (1b) SECTION
9 1.284 8
10 1.284 9
11 3.785 10
12 6.440 11
13 6.286 12
14 6.401 13
15 1.883 14
16 1.025 15
17 1.881 16
18 3.190 17
19 3.220 18
20 3.201 19
21 0.5713 20
21 0.3225 21
23 0.3225 22
24 0.1815 23
25 0.1275
26 0.1275
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TABLE IV. - SYSTEM MODIFICATION INPUT DATA

TARGET FREQUENCIES
{TVAL SM)!

TARG%T TOLERANCES
N

EE SM)
TARGET MODE
NO. NO. TOLERANCE
1 3 .001
2 4 BL
3 5 .001
4 6 .001
5 7 .001
INITIAL COVARIANCES
AND CHANGE LIMITS
(SRR SM AND DPLI SM}
UNIT
PARAMETER NO. COVARIANCE LIMITSE
1 1 -10,+10
2-15 1 -5,+10
16 1 -2,+2
17 1 -1,+1
18 1 -1,41

NOTES: These data correspond to the input in the EAL runstream in figure 3b.

1.
2.

3.

Names in parentheses are EAL data set names.

Line number of structural data set corresponds to joint for rigid
masses and beam segment number for stiffnesses.

The unit parameter is a set of numbers computed from multiplying
the fraction times the structural values in the indicated lines
and columns.

A tolerance value of 0.1 rather than 0.001 indicates that it is
less critical for the final frequency to be very close to the
target value.

. These values were modified in the iteration process.

. Limits of -5 to plus 10 means that the structural parameter cannot

be reduced by more than 5 x {FRACTION) x (EXISTING VALUE) nor
increased more than 10 x (FRACTION) x (EXISTING VALUE).

- FINAL MODIFIED STRUCTURAL PROPERTIES

EDGEWISE FLATWISE

STIFFNESS STIFFNESS
El El

ﬂB#%¥) LBF%#)
1046.96 23.311
1046.96 23.311
1046.96 23.311
1046.96 23.311
1046.96 23.311
1046.96 23.311
1046.96 23.311
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32
1046.96 23.32

TOTAL MASS MOMENT OF INERTIA ABOUT X AXIS (HUB): 19780 1b-in sec?.

TOTAL WEIGHT:

NOTE:

265.30 1b

A11 other properties unchanged from Table I.
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ORIGINAL PAGE IS
OF POOR QUALITY
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Figure 3b.- EAL runstream for
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Figure 3c.- EAL runstream for developing the sensitivity matrix.
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Figure 3c.- EAL runstream for developing
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NUMERICAL STUDIES OF THE THERMAL DESIGN SENSITIVITY
CALCULATION FOR A REACTION-DIFFUSION SYSTEM WITH
DISCONTINUOUS DERIVATIVES®

Jean W. Hou and Jeen S. Sheen
Department of Mechanical Engineering and Mechanics
014 Dominion University
Norfolk, VA

SUMMARY

The aim of this study is to find a reliable numerical algorithm to calculate
thermal design sensitivities of a transient problem with discontinuous
derivatives. The thermal system of interest is a transient heat conduction problem
related to the curing process of a composite laminate. A logical function which can
smoothly approximate the discontinuity 1is 1introduced to modify the system
equation. Two commonly used methods, the adjoint variable method and the direct
differentiation method, are then applied to find the design derivatives of the
modified system. The comparisons of numerical results obtained by these two methods
demonstrate that the direct differentiation method is a better choice to be used in
calculating thermal design sensitivity.

I. INTRODUCTION

High-performance polymeric composites have been used widely in the aerospace
and automobile industries. Such materials are commonly composed of long or chopped
fibers embedded in the thermosetting resin matrix. Changes in physical and chemical
properties of such composite materials during the curing process are rather
complex. Thus, it 1s not a trivial task to properly design a cure cycle
(temperature and pressure profiles) for a curing process. The material should be
cured uniformly and completely with the lowest void content; the temperature inside
the laminate must not exceed some maximum value; and the curing process should be
completed within the shortest amount of time. In the past, most cure cycle
designs for newly developed composite systems are based upon the technique of trial
and error. Several simulation models [1-3] have been developed recently for curing
various epoxy matrix composites. This development represents a significant
advancement in computerizing the cure cycle design. An attempt [4] has been
made recently to incorporate thermal optimal design techniques with such
analysis capabilities to systematically establish the "best" curing process. The
research progress regarding the computational aspects of the thermal design
sensitivity analysis is reported in this paper.

¢
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The derivative of the thermal response with respect to the design variable is
usually called the thermal design derivative or sensitivity. The information of the
design derivative is not only very useful for the trade-off design, but it is also
required for an iterative design optimization. The calculation of design
derivatives in thermal problems has attracted research interests in such areas as
design of space structures subject to temperature constraints [5], and chemical
process control [6,7]. The thermal system studied in this paper can be stated as a
heat conduction problem coupled with chemical-kinetic reaction during the cure
process, while the temperature of cure cycle is considered as a design variable.

II. MATHEMATICAL FORMULATION OF CURING PROCESS

During the curing process, the temperature distribution T(x,t) and the degree
of cure a(x,t) of the resin inside the composite depend on the rate at which heat
is transmitted from the environment into the material. The heat condyction model
for a piled composite with its thickness 2h during the curing process can be found
as

2
T T o
pc %Y =k 9—5 + pHpa (1)
X
with the boundary conditions,
or (0,t) = 0 0 <t<T
ox
(2)
T(h,t) = Tc(t), 0 <t<T
and the initial condition
T(x,0) = To(x), 0<x<h, (3)

where p 1s the mass density, c is the coefficient of heat capacity, k 1s the heat
conduction coefficient, and Hp is the total or ultimate heat of reaction during the

curing process. The last term in equation (1), pHR&, denotes the rate of heat
generated by chemical reaction which can be expressed by cure kinetics.

Two models of cure kinetics are investigated here. One 1s the chemical-kinetic
reaction of Hercules 3501 during press processing [1]. The chemical-kinetic
reaction can be determined in terms of the degree of cure, a, which 1s given
experimentally from reference [2] as

fl(a,T,t) (K1+K2a) (1-a) (B-a), 0<a<0.3

Re
1]

(4)

fz(a,T,t) K3(1—a), 0.3<a

with the initial condition a(x,0) = 0 and the following definitions:

K

] = b4 e Exp(—AEl/RT)

~
]

9 AA2 . Exp(-AEz/RT)
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K3 = AA3 . Exp(—AE3/RT)

where AAI’ AAZ’ AA3, AEl, AE2, AE3, R and B are material constants, and T is K°
temperature. Note that the rate of cure presents discontinuity at «=0.3.

The second example is taken from the results of compression molding of a

polyester [3]. The degree of cure of resin in terms of temperature is given as
a= (K +Kd) (1-0)" (5)

1 2

where m and n are constants, and Kl and K2 are exponential functions of temperature.
Note that in equation (2), the temperature Tc(t) on the surface of the piled
pre-pregs is called the cure temperature., The cure temperature can be controlled by
the processor and 1is considered as a design variable. Moreover, the performance
index of interest iIs the temperature uniformity ¢ which may be defined as the least

square of the deviation between the pointwise temperature and the averaged
temperature as

T h o, h )
b=[ {J T ax- (f T d&x)“/n} dt (6)
(o] (o] o]

Some observations of interest are mentioned here:

1. The state equations of the cure process are coupled with two state variables,
the temperature distribution T(x,t) and the degree of cure a(x,t).

2. The nonhomogenous boundary value, Tc(t), is the design variable.

3. The rate of cure, @« in equation (4), exhibits discontinuity, as does the last
term pHRa in the equation of heat conduction.

The heat conduction problem stated in equations (1) to (3) can be simplified to
an equation of T(x,t),

oT o T

= pc T + pHya (T+Tc) (7)

with the homogeneous boundary conditions,

oT(0,t) _

A ’ 0<t<T (8)
T(h,t) = 0, 0<t<T
and the initial condition,
T(x,0) = T (x) = T_(0), 0<x<h, (9)

by introducing the following replacement of the temperature T(x,t):
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T(x,t) = T(x,t) + T, (t) (10)

It is noted that the initial temperature T _(x) of the composite laminate 1is

identical with the 1initial cure temperature for most applications. Therefore,
equation (7) might have not only homogeneous boundary conditions but also a
homogeneous initial condition. Moreover, the design variable Tc(t) now appears on

the right side of equation (7). 1In other words, the design variable is now involved
in terms of heat generation, instead of being a boundary condition. It is also
noted that the replacement of T(x,t) doesn't change the structure of the performance
index ¢, 1i.e.,
T h _9 h 9
b= {f T° ax - (J Tdax)/n} dt (11)

o (o] (o]

In general, the cure temperatures recommended by resin manufacturers consist of
linear segments. As an example, the cure temperature recommended for the Hercules
3501-6 resin is shown in Fig. 1. Consequently, the right side of heat conduction

equation (7) has discontinuous terms of pc’f‘c as well as pHR&. The term pHR&
shows discontinuities in both x and t dimensions. The term chc, on the other

hand, is discontinuous along the t dimension only. Such discontinuities pose
numerical difficulties for calculating the design derivatives, especially, when the
time or the place at which these discontinuities occur is subjected to change due to

the perturbation of the design variable. It is easy  to see that the term pH a is
of this nature. Note that the discontinuity of a 1s determined by a state
variable-dependent jump condition at a(x,t) = 0.3. Thus, the discontinuity of the
term pHRa will take place at the new critical time t and the new position x so

that E(;,E) = 0.3 for a perturbed state variable . Also the disconmtinuous point
of the term pcT can be shifted, 1if the time interval of the junction point of

c
constant and variable temperatures of the cure temperature profile, such as T, in
Fig. 1, 1s considered as a design variable.

III. LOGICAL FUNCTION MODELLING

Quite a few engineering examples whose state varlables show discontinuities in
derivatives can be found in the multi-state control problems‘[S], and the mechanical
systems with intermittent motion [9, 10]. However, the derivative discontinuities
of those examples are associated with time dimension only.

The 1intermittent motion 1is characterized by the occurrence of nearly
discontinuous force and velocity caused by impulsive force, impact, mass capture,
and mass release. The optimal design problems of mechanisms with intermittent
motion have been discussed by Huang, Huag and Andrews [9]. Their method is based on
the identification of critical times at which discontinuities in forces or
velocities occur [8]. The overall time interval of analysis can be divided into a
number of subintervals based on those critical times. The jump conditions of state
variables are then employed in an adjoint variable approach to determine the
discontinuities of adjoint variables. The adjoint varlables are then used for the
calculation of design sensitivity coefficients. In employing this approach, an
a priori knowledge of the critical times is required. The determination of the
critical times of jump conditions, however, may lead to a rather complex logic for
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digital computer programming. In order to avoid these complexities, Ehle and Huag
[10] 1introduced a "logical function" to smoothly approximate discontinuities, and
then calculated the design derivatives by the standard adjoint variable technique.
An example in their work shows that the proper selection of the sizes of the time
step and the transient zone used for discontinuity approximation is crucial to the
accuracy of design sensitivity calculation. However, making such a selection is
difficult. Nevertheless, the logical function approach is used in this study. The

reason is that & is a function of time as well as spatial position. As a result,

keeping track of the & discontinuity at every spatial position is a very difficult
task for numerical analysis.

As mentioned earlier, logical functions can be used to represent a sequence of
logical events. A logical function L(z,e) is a continuous function which smoothly
approximates a Heaviside step function H(z) within a given region 0<z<e for a small
number e, The symmetrical step function H(z) is defined as:

0, z <0
H(z) = % z=0
1, z > 0.

The logical function employed here is given in reference [10] as:

1212n+1 z2n+1

+
,21'1""’1 - (z_€)2n+l}

1
L(Z,E) ='2— |z|2n+1 N l [lz_e
2

where n is an integer selected in order to ensure the continuity of the derivative
up to order d, i.e., 2ntl1>d. The n is taken as 1 in this study. The approximation
of the logical function 1is shown in Fig. 2. Note that the values of a logical
function L(z,e) are 0, 1/2 and 1 for 2z=0, €/2 and &, respectively, and the
transition width € defines the region of approximation. The value of the logical
function 1is exactly 1dentical with the Heaviside step function outside the
approximation region.

In using the logical function method, one is free to choose a wide variety of
arguments that determine the transition point for a logical function. As an
example, the transition condition &=0.3 for the degree of cure can be used to define
a logical function L(a-0.3,€) such that L(a-0.3,€) = 1 when «»0.3+¢, and
L(a-0.3,€)=0 when a<0.3. Based on this definition, the logical function can be used
to compress the equation of cure kinetics into a compact form:

@ = £+ [1 - 1(a-0.3, &)] + £,
Note that the above single equation of cure kinetics is the same as the original
equation over the entire time interval of analysis outside the tramsition period.
Furthermore, since the logical function is a smooth function of a«, there 1s no
discontinuity in the a of the preceding equation. Thus, the analysis of the design
sensitivity can be simplified to a great extent, because there is no need to monitor
the perturbation of a discontinuity. Note that the value of a(x,t) in equation
(12) can be calculated by the linear combination of shape functions and nodal values

obtained by the finite element analysis. Similarly, the discontinuity in fc can be
smoothed out in the same manner. Again, using the cure temperature profile

* L(a-0.3, €) (12)
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indicated in figure 1 as an example, the first discontinuity at t=T1 can be
expressed as

T =all -L(t-T, ¢l (13)
c 1
It is then easy to consider the junction point T1 as a design variable based upon
the above equation.

Finally, the heat conduction equation stated in equation (7) can be expressed

as ) 2
T . B T -
vl k —t s (T,a,Tl)
ox
2_
k2T pca [l -L(t-T,, )l
2 1
ox
+ pHRf1 e [1 - L(a-0.3, €)] + pHRf2 e L(a-0.3, €) (14)

for the cure cycle given in figure 1. Similarly, the equation of the degree of cure
given in equation (12) can be rewritten here,

o

£(T,a,T,)

f1 e [1 - L(a-0.3, €)] + £ * L(a0.3, €) (15)

2

The finite element discretization 1is then introduced to convert the above
initial-boundary value equations into a set of first order differential equations:

[c] {T} + [K] {T} = {F({T}, {a})} (16)

and

[N] {a} = {G({T}, {a})} (17)

Quadratic and 1linear polynomials are used to 1interpolate the states of
temperature distribution and degree of cure, respectively. Note that the right side
vectors of the above two matrix equations are different. This is because the trial
functions for equations (14) and (15) are different.

The finite-element discretization can also be used to simplify the expression
for the performance index of concern into a single integral:

T
o=f (M el @ - M @) @)F T de (18)
(o]

where the [C] 1s same as the one defined in equation (16), and the components of the
vector {P} are obtained by integrating the quadratic shape functions of temperature.

This set of equations (16) and (17) is then solved simultaneously by a
numerical integration code called DE [11]. The DE program is one of predictor-
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corrector integration algorithms using the Adams family of formulas. The truncation
error is controlled by varying the step size and the order of the method. The DE
program has the capability to handle moderately stiff equations which often occur in
the problems of chemical kinetics. To preserve the accuracy of analysis, the
temperature distribution and the degree of cure are subjected to the same numerical
error tolerance during the numerical integration.

IV. DESIGN SENSITIVITY ANALYSIS

In general, there are four ways to calculate the thermal design derivatives,
i.e., the finite -difference method, Green's function approach, the direct
differentiation method and the adjoint variable technique. The last two are often
mentioned in the literature [12-15]. Both methods lead to a set of linear equations
that have a structure similar to the original system.

The computational efforts regarding the direct differentiation method and the
adjoint variable method depend mainly on the numbers of constraints and design
variables of concern. The direct differentiation method requires the solution of a
differential equation for each design variable; while the adjoint variable method
requires the solution of an adjoint equation for each constraint. Consequently, the
direct differentiation method is more efficient 1in calculating the design
derivatives than the adjoint variable method when the number of design variables is
less than the number of constraints, or vice versa.

It is known that the direct differentiation method provides equations of design
derivatives which can be integrated forward, instead of backward to solve the
adjoint variables. The equations of design derivatives can, therefore, be solved
simul taneously with the original system of equations and are subjected to the same
numerical error tolerance. Furthermore, the approach of direct differentiation
provides, without extra efforts, the time histories of design derivatives of
functionals and state variables. This information can be used by a designer to
reconstruct the design space. One may check this information to see whether a
design variable of concern contributes to the perturbation of the performance index
consistently over a long or short period of time. As an example, the time histories
of design derivatives of various pollutants' concentrations with respect to emission
and meteorological parameters are studied and used in reference [16] to improve the
mathematical model of air quality. In this study, the direct differentiation method
and the adjoint variable technique, in conjunction with the logical function method,
is used for the calculation of thermal design sensitivities.

The calculation of design derivatives using the direct differentiation method
is straightforward. For example, let Ty in Fig. 1 be the design variable. The
direct differentiation of equations (14) and (15) yields

2_1

oT" d°T
pC 3 = k-;;i - pc a L'(t—Tl, €)
afl Gfl
+ pHp(F @' +——T') ¢ [1 - L(a - 0.3, €)]
oT
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of of

+ pHR(‘a—az— a’ +—_—ZT') L(a-0.3, €) + pH a a' e (f - f) (19)
oT R da 2 1
and
. afl Gfl
a' = (—6_ a' +——T') d [1 = L(a— 0'3’ €)]
o -
oT
af2 af2 -
+(Wa'+—_—T') *L (a=- 0.3, ¢
oT
da -
t . (f2 fl) (20)

where the prime indicates the design derivative with respect to Tl' The derivative
of the logical function dL/da is an approximation of a delta function which can be
derived from the definition of the logical function L. From equations (8-9) and the
initial condition of a(x,0) = 0, the boundary and initial conditions for design

derivatives, T'and a', can be derived as

_l
3T (o, t) éi’t) =0, 0<t<T
(21)
T'(h,t) = 0, 0<t<T
and
T'(x,0) = = T '(0), 0<x<h
¢ (22)
a'(x,0) =0 , 0<x<h

where Té (o) is usually 2zero unless the initial control temperature T '(o) is

considered as a design variable. With these boundary and initial conditioms, the

last two coupled 1linear equations can be solved numerically for the design
derivatives T' and «'.

Based on the same finite element discretization as used in solving the original

system, equations (19) and (20) can be converted into a set of linear ordinary
differential equations:

[c] {T'} + [K] {T'} = {H({T}, {a}, {T'}, {a'D)} (23)

and

(N] {a'} = {Q({T}, {a}, (T'}, {a'})} (24)

Note that the coefficient matrices of equations (23) and (24) are similar to those
of equations (16) and (17). However, {T} and {a} appear in equations (23) and
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(24). Thus, the numerical integration of equations (16) - (17) and (23) - (24) can
be performed simultaneously so as to maintain equal accuracy between state
variables ({T}, {a}) and design derivatives ({T'}, {a'}). The DE program,
mentioned previously, is employed as an integrator to obtain the numerical results
of design derivatives.

The values of the design derivative of temperature {T'} can then be directly
substituted into the following equation to calculate the thermal design derivative
of the performance index:

T _1 = =.T T =
o' =2 [ {T} [c] {T'} - {1} {P} {P} {T'}/h) dt (25)
(o]

The above equation is derived from equation (18) by using the direct differentiation
me thod.

Regarding the computational efficiency of the direct differentiation method, it
is worthwhile mentioning two notes here:

1. Because the coefficient matrices of {T'} and {&'} are identical to those

of {T} and {&}, the triangular factorizations of matrices [C] and [M] need
to be done once only. The calculation of {T} and {&} can be carried out by
back substitution for each of design variables.

2. Compared to_the original system equations, the right side of equations for
computing {T'} and {a'}, such as equations (23) and (24), may have
different frequency contents. Thus, to maintain the same numerical
accuracy, a smaller _time step At may be required for the DE program to
solve the pairs ({T}, {a}) and ({T'}, {a'}) simultaneously.

A major step in the adjoint variable method is deriving the adjoint equations
to solve the design derivatives of equations (18) in terms of state and adjoint
variables. In order to do so, one may extend the performance index ¢ of equation
(11) as, using T, as a design variable,

h —
dx] T} dx dt

<
n
= =30

T h
[ [ ur-J

(o}

dx] T} dx dt

o3

T h _ h
[ &)

T h - 2_
T -
+ [ [ {xlpc —gt-k—-ag-g(T,d,Tl)] +
(o] (o]

0x
s 122 - £(T,q,T )]} dx dt
at ”1
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where a(x,t) and s(x,t) are two arbitrary functions.
zero because of state equations (14-15).

Note that the last integral 1is
equation with respect to T

Taking the design derivative of the above
1 and integrating by parts, it follows that

T h o
¢'=f f (—)\OT_SEI'—)dth
o
T h 2 h 5
+[ [ [- pC‘%% - k-é—% - A-Q% - s-—a-£ + 2(T—f E-dx)] T' }Jdx dt
o o ox dT dT o}
T h
_%s _ _Oof _, 087
+ [ [ ] 3t~ S 3g xaa]a}dxdt
o o
T P h
o7 oz,
+ (- kA 5z + k32 T')| dt
0 o
R T
+ [ (pcAT' + sa')| dx (25)
0 o

Note that the only two
derivatives T' and a'.

unknowns 1In the above equation are the design
all terms

One may now specify the variables A and s in such a way that
assoclated with T' and a' are dropped This

. can be accomplished by
introducing the following adjoint equations for A and s

h =
o=pcg—’t‘+ka;‘+ x93+sa—f—2(tr-f%dx) (26)
ox oT oT o}
and,
2s , , 28, _ Of
=%t ** %t %5 (27)
with the terminal conditions,
AMx,T) =0, 0<x<h, (28)
s(x,T) =0 0<x<h, (29)
and the boundary conditions,
SN
3 (0,t) =0 0<t<T, (30)
A(h,t) = 0, 0<t<T, (31)

Then, the combination of equatious

(25 -
design derivative of the functional

31) provides a simple formula for the
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dg
= f j (-\—=2 - g ——-9 dx dt (32)
arl 6T1

h

+ [ pe A(x,0) T,'(0) dx
(o]

Equation (32) shows that the design _derivative of ¢ , namely, ¢', is a
functional of the state variables a« and T, and the adjoint variables A and s.
Since the adjoint variables of equations (26 - 27) form an "adjoint" diffusion-
reaction system similar to the original one, the same numerical scheme used to solve
the state variables a« and T can be extended here to compute _ the adjoint
variables s and A. For instance, using the shape functions of a and T in equations
(16 = 17) to interpolate the adjoint variables A and s obtains the following matrix
equations for nodal values of A and s,

[c] {A} = [K1{A} + (R ({T}, {a}, {7}, {s})} (33)

[N] (s} = {s({T}, {a}, (A}, {sD)} (34)
with the proper boundary and terminal conditions.

In general, the adjoint equations cannot be solved simultaneously with the
original system equations. Because of the terminal conditions, the adjoint
equations can be solved by either the backward integration along the real- time t-

axis directly or the forward integration along the artificial time t*—axis by

changing the independent variable t to e as t* = T-t . However, both approaches
require the solutions of the original system equations prior to solving the adjoint
equations.

In the derivation of design derivatives, it has been assumed that T(x,b,t)

and a(x,b,t) have enough regularity in the time-spatial domain and in the design
space.

V. NUMERICAL EXAMPLES AND RESULTS

Four examples are presented in this section to discuss the numerical accuracy
of the logical function approximation and the methods for calculating the thermal
design derivatives. The accuracy of the thermal design sensitivity analysis is
checked, based on the fundamental definition of design derivatives which states that
they can be approximated by the finite difference. In other words, it 1is
mathematically true for a small perturbation of design variable ATC so that:

d¢ ~ A
dT AT
C C

d)'

The perturbation of the design variable NT is defined as the difference between a
perturbed design T * and the nominal design T , 1.e.,
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As a result of the above definitions, it follows that

*
2= ¢ (1)) - K1)

q_,' . ATC (35)

The above equation provides a simple means to check the accuracy of the design
sensitivity analysis.

The first example presented here deals with the curing process of compression
molding (equation (1) and (5)) in which the cure temperature of the process is
assumed to be a constant temperature. The nominal cure temperature is taken as
423°K, and there is no discontinuity involved. According to the approximation
defined in equation (35), the results shown in figure 3 demonstrate the validity of
the direct differentiation method for the thermal design sensitivity analysis.

The second example, on the other hand, refers to the curing process of press
processing (equation (1) and (4)) in which a jump condition appears in the
derivative of the degree of cure. The profile of the cure temperature is assumed to

be Tc(t) = bo + blt where the initial temperature b, and heating rate b, are
considered as design variables. The nominal values of bo and bl are taken as

290% and 1.7%/sec . The changes of the performance index with respect to the
values of b, and by are calculated by using the direct differentiation method as

A = ~0.3158°Abo

A = 2.6336'Ab1

However, using the adjoint variable technique obtains
Ay = —0.0367.Abo

Ay = 8.099'Abl
The results indicated in Tables 1 and 2 show that the direct differentiation method,
in conjunction with the logical function approximation, performs very well even for
a thermal problem with discontinuous derivatives. It is also shown in Table 2 that
the relation between the performance index and the heating rate b, 1s highly
nonlinear. In this example, the transient width € of equation (15) is defined as

10-4 second which is the smallest time step size allowed in the DE program.

Next, the thermal design derivative of the compression molding is studied, with
the cure temperature being given in figure 4. The value of T,, where the rate of
the cure temperature changes, 1is considered as a design variable. In this study,
the nominal value and the perturbat%on of T, are taken as 40 seconds and 1 second,

respectively. The discontinuity of T at T, can be smoothed by equation (13). The

upper curve shown in figure 5 is obtained by using the direct differentiation method
based on equation (13). On the other hand, the lower curve displayed in figure 5 is

obtained by using the following expression for the design derivative of T :
c
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dT t<T
c _ {0, 1
a, t > T1

The design derivative of T at the junction point, Ty is a delta function which is

c
not included in the above equation. The results in figure 5 clearly show that the

design derivative of the jump condition should be considered in the sensitivity
calculation.

It is easy to obtain the time histories of design derivatives of state
variables using the direct differentiation approach. Using this information, the
processor can investigate whether a design variable of concern contributes to the
change of system performance consistently over a long or short period of time so as
to reconstruct the design space. For example, figures 6 and 7 show that the change
of the design variable T, has a significant effect on the temperature and the degree

of cure on the surface of the pre-pregs when the time is 42 seconds.

The distribution of thermal design derivatives a' and T' along the thickness of
the pre-pregs is shown in figures 8 and 9 for different instants of time. It is of
great interest to see that the most significant changes of T and a due to the change
of the junction point T, happen around 80 seconds and at 2.5 mm from the surface of
pre-pregs.

In this example, the various values of transient width, regioned from 10_2
second to 10”7 second are chosen to be used in the logical function approximation.
The sensitivity results obtained accordingly are essentially the same. This
indicates that the value of the transition width in the range of study has no
significant effect on _the accuracy of the sensitivity analysis. The transition
width € is taken as 10"~ second in the results reported in figures 6 to 9.

Finally, the cure temperature of the press process studied herein is again the
same as the one shown in figure 1. With 100 minutes as the nominal value, T, 1is
considered as a design variable. Thus, both equations (12) and (13) should be used
to approximate the jumps in @ and T smoothly for the thermal problem of the press

c
process. The results of sensitivities calculated by the direct differentiation
method are in good agreement with the actual changes calculated by the finite
difference method as shown in figure 10. The transition regions used in this

example are 10-4 second and 10—2 second for equations (12) and (13), respectively.

VI. CONCLUSIONS

It is quite common to have empirical formulations appear in the state equatioms
modelling the composite curing process. These empirical formulations may introduce
discontinuous state derivatives into the state equations. A simple method which
uses the logical function approximation is introduced in this paper to perform the
thermal design sensitivity analysis for such state equations.

Based on the numerical study, it is obvious that the direct differentiation
method provides more accurate results than the adjoint variable method does. The
direct differentiation method also yields the time histories of the design
derivatives. 1In addition, the information of design derivatives of the pointwise
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constraints can be obtained by using the direct differentiation method without extra

cost.

It is thus concluded that for the transient problem in this study, the direct

differentiation method is superior to the adjoint variable technique in terms of
accuracy and physical interpretation of results.

10.

11.
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TABLE I DESIGN SENSITIVITY RESULTS FOR DESIGN
VARIABLE bo IN EXAMPLE 1

¢ .Abo
b, ¢ Ad (Direct Diff) (Adjoint)
290.0 26.217 - - -
289.9 26,248 0.0315 0.0316 0.0037
289.8 26.280 0.0628 0.0632 0.0073
289.7 26,311 0.0940 0.0948 0.0110
289.5 26.313 0.1559 0.1579 0.0183
289 26,525 0.3077 0.3157 0.0367
TABLE 2 DESIGN SENSITIVITY RESULTS FOR DESIGN
VARIABLE bl IN EXAMPLE 1
¢1.Abl
by ¢ A (Direct Diff.) (Adjoint)
1.700 26.217 - - -
1.702 26,222 0.00497 0.00527 0.01620
1.706 26.230 0.01312 0.01580 0.04859
1.708 26.233 0.01633 0.02107 0.06479
1.710 26.236 0.01898 0.02637 0.08099
1.730 26,234 0.01713 0.07901 0.24297
1.750 26.189 =0.02805 0.13168 0.4050
1.800 26.962 =0.25457 0.26336 0.8099
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Figure 3. Thermal design derivatives for compression
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Figure 6. Design derivatives of temperature at time equal to 42 sec.

281



0.0280

B —a— Direct Ditferentiation without
g - Jump Approximation
[&]
I 0.0204F —&— Direct Differentiation with
@ Jump Approximation
g -
& —8— Finite Difference
® 0.0128}
£
= -
o
2 0.0052f
o
2
o
o { -a—
& —0.0024
(7]
o
D —
—0.0100 1 I ! 1 ! | )
0.0mm 2.5mm 5.0mm
(Center) (Surface)
Figure 7. Design derivative of degree of cure at time equal to 42 sec.
2.50
@
| .
2 1.20
o
[
®
a
£
®
U [
®
£
°
®
2 =140
o
2
o
o
(=]
S', -2.70
Irs
o
o
-4.00 L
0.0mm 2.5mm 5.0mm
(Center) (Surface)
Figure 8. Distribution of T' at different time instants.

282




15.00

11.90

8.80

5.70

2.60

Design Derivative of the Degree of Cure (x10-2)

-=.50
0.0mm 2.5mm 5.0mm
(Center) (Surfacel

Figure 9. Distribution of o' at different time instants.
Direct Differentiation

° ® Finite Difference

—3.0
°

l
N
3

|

I
N
o

|

|
-
(8]

|

—1.0}

-5

Change of Functional, ¥

11 ! 1 J
00.0 0.5

Change of Design Variable

Figure 10. Thermal design derivatives for press molding
with a jump in T..

283



N87-18873

APPLICATION OF DESIGN SENSITIVITY ANALYSIS FOR GREATER IMPROVEMENT

ON MACHINE STRUCTURAL DYNAMICS
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Department of Precision Engineering
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Kyoto, JAPAN

SUMMARY

This paper presents methodologies for greatly improving machine structural dynamics by using design sensitivity
analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are
described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then,
design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic
structural members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Cases (1) and (2)
correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design
variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed in this paper.

1. INTRODUCTION

In usual design optimization of machine structures, a framework pattern for the complete structure is definite and
initial design variables which are usually tentatively given are modified so that the objective function is improved. In such
design optimization, design sensitivity coefficients of evaluative parameters can be used for finding the most preferable design
change directions. However, improvement of the product performance or characteristics, which is attained under the condition
of a constant framework and using poor initial design variables, often is not satisfactory. Furthermore, machine structural
dynamics depend on characteristics at many natural modes, and on damping characteristics which are yet unclear. Hence,
the relationships between the machine structural dynamics and design variables are very complicated. Application of design
sensitivity analyses to optimization of structural dynamics is not simple.

This paper proposes design decision making methods of structural dynamics which intend to greatly increase product
performance of machine structures. First, evaluative parameters of structural dynamics are listed, and design sensitivity co-
efficients of the parameters are derived. Next, the relations between the design sensitivity coefficients and the parameters of
displacement, internal vibratory force, and energy distributions are analyzed. Based on the analyses, priorities among the
evaluative parameters are clarified. Then, using the design sensitivity analyses and the relations between parameters, design
improvement procedures of structural dynamics are constructed for each of the three cases: (1) addition of elastic structural
members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Addition of elastic structural
members and mass elements on the original design is utilized for decreasing the static compliance and for balancing the fre-
quency response over the frequency range, respectively. Substantial changes of joint design variables are made for balancing
the frequency response and for increasing damping ratios. Finally, the effectiveness of the procedures is demonstrated by
applying them to a structural model.

2. EVALUATIVE PARAMETERS FOR STRUCTURAL DYNAMICS
AND INFORMATION FOR DESIGN CHANGES

A machine structure has point E where vibrational (excitational) force or static force generates, and point G where
vibrational or static displacement produced by that force causes reduction of the machine performance. The transfer function
of a vibrational system defining the relation between the input force at point E and the displacement output at point G is
expressed as the “frequency response”.

Fig. 1 shows an example of the receptance frequency response R(=D/F) which is obtained from the displacement D
at point G caused by the harmonic force F at point E.

According to the requirements for the product performance, the following changes of the characteristics are required:
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(1) decrease the static compliance fg,

(2) increase/decrease a natural frequency wn,

(3) increase the damping ratio {, at a natural mode,

(4) decrease the receptance value R, at a natural mode.

In the case of machine tools, the maximum receptance value Rp.m.x at the cutting point is evaluated for increasing
the stability against regenerative chatter (refs. 1 and 2), and natural frequencies are evaluated for diminishing the forced vibra-
tional troubles. Even in other machines’ cases concerned with transient dynamic response, some treatment among (1) through
(4) can be applied. Hence, the “frequency response” is the most fundamental characteristic of structural dynamics.

In the following nomenclature, “direct” means that the point and direction of the exciting (or static) force are the
same as the pick-up point and direction of displacement, while “cross” means that those points and directions are not the
same.

2.1 Evaluative Parameters of Frequency Response

The equation of motion in a linear vibrational system having multiple-degrees of freedom is expressed by the following
equation:

IMI{X} + [Cl{X} +i[HI{X} + [K]{X} = {F] (1)

where [M], [K], {C], and [H] are the mass, stiffness, viscous damping, and hysteretic damping matrices, respectively; where
{X} and {F} are the column vectors representing the displacements and the forces; and where i designates the imaginary
unit.

The angular natural frequency at an arbitrary nth natural mode is denoted as w,. For easy expansion of equations, a
displacement eigenvector {X,,} at each of the natural modes is normalized as follows:

{X,} TIM] {X,} =1 (then, {X5} T [K] {Xp} =wn?)

The equation showing the relation between {X} and {F} at a given angular frequency  is expressed using re-
ceptance matrix [R(w)] as follows:

{X} =[R(w)] {F} (2

The receptance matrix under the assumption of the proportional damping vibrational system is obtained using the
orthogonality relations of displacement eigenvectors:

[fr]
1= () 42— {m

m m

R = £ 3

1

where [fn], wm, and {, are respectively the modal flexibility matrix, angular natural frequency, and damping ratio at the
mth natural mode. The modal flexibility matrix (ref. 3) is obtained using the displacement eigenvector { Xm} and stiffness
matrix [K] as follows:

(X (Xa)T
T %) @

Damping ratio {,, at the mth natural mode is obtained for a viscous damping vibrational system as follows:

_ om{ Xm ] TIC] (Xm)
2 (X} TK] { Xmn } )
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When no other natural frequencies having large modal flexibility exist near the nth natural frequency, the receptance value
at the nth angular natural frequency, w,, is approximated from equation (3) using the following equation:

[R(wn)] =- iz[f“] + 5 [l (6)
fn m#n 1- ( :::1 )2

Since [R(0)] is equivalent to static compliance [fs] by substituting zero for w in eq. (3), the following relation is
established between the modal flexibility matrix, [f;,], and the static compliance matrix, [f].

(f]= £ [fm] ™

By selecting diagonal elements at the j-row and j-column of matrices [f;] and [fy,] in eq. (7), the following relation is ob-
tained (ref. 3).

fsG,0= 2, ImGp (®)

Since the values of fy,(;, ;) are always positive, the relation ineq. (8) means that the summation of fy, (j, j) at all natural modes
is equal to the value of static compliance fy, j).

2.2 Design Sensitivity Coefficients of Evaluative Parameters (ref. 3)

The design variables are denoted by a vector b= {by, by, -, by }T, where N is the number of design variables.
Design sensitivity coefficients, dw,/db, and 3 { X, } /b of an angular natural frequency, wy, and a displacement eigenvector,
{Xqa} , with respect to a design variable vector, b, are obtained by applying the orthogonality relations of displacement eigen-
vectors to the eigenvalue equation of motion partially differentiated with respect to b, as follows:

dwn _ 1 dwh 1 . o 0[K] , 9[M]
9 2w, “3b 2o, (X )T [ - b5 1 (%) ©)
| 1x, )T 2K s a[M]]{X } (%]
0 {Xq} 1 [ ] w ab
=- — (X ) T — (X, ) (X,  + £ = (10)
ob 2 1?11;11 wy - wm

Using equations (9) and (10), design sensitivity coefficients of modal flexibilities are derived from eq. (4):

f.
oMl __ {xllx!T{x}T[] )
ab ot ab
| X T LB P ) LX) (X I (X T (X} T
| + 1 s ab - ob 1)
o of

Similarly, design sensitivity coefficients of damping ratios ¢, for a viscous damping vibrational system are derived from eq. (5)

as follows:
afn - 1 1 6(.0?‘ ; |
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3 Xa} T 1 T 9[C]
+wnT [C] {Xn} +“2_‘wn {xn} T {Xn}
i 3{Xn} T ) o 8[K]
2 Tb_ [K] {Xn} fn {Xn} _éT)“" {Xn}} £12)

Design sensitivity coefficients with respect to fundamental structural elements of spring elements, concentrated mass
elements, and damping elements are obtained from egs.(11) and (12).

(i) Spring element

Spring stiffness k of a spring element at point J (for example, a joint) in the machine structural model is considered
as a design variable. The design sensitivity coefficient of the direct modal flexibility fa(c, c) at the nth natural mode at point
C is:

of o f - f
— T et £ (e e, (13)
m#n “@n 1
Wm

where f;(c, 5y and fi(c, 5y are the cross modal flexibilities at the nth and the mth natural modes, respectively. The design
sensitivity coefficient of the damping ratio at the nth natural mode is:

a;‘n gn
SLLE 14
” 5, (14)

where f,(y, 5y is the direct modal flexibility at point J.

(ii) Concentrated mass element
The mass, My, of a concentrated mass element at point I in a machine structural model is considered as a design variable.
The design sensitivity coefficient of the direct modal flexibility fa(c, ¢y at point C is:

ofacc, c & fm(c, 1
.0 =2w,21fn(c, 9] 2—1( my 2)) (15)

M, ' n

1-—

wm

(iii) Damping element
In a viscous damping vibrational system, the design sensitivity coefficient of the damping ratio with respect to viscous
damping coefficient ¢ of a damping element at point J is:

Kn _ wn

ac 2

fas, 1) (16)

2.3 Information of Energy Distributions

2.3.1 Relationships between changes of natural frequencies and energy distribution rates (ref. 4)

It is assumed that the stiffness matrices at subsystems s and r of the machine structure are [K;] and [K,], the mass
matrices at subsystems s and r are [M] and [M,], and the displacement eigenvectors corresponding to subsystems s and r are
{Xn}s and {Xn} r. Now, the values of the stiffness matrix [Kg] at subsystem s increase (or decrease) « times to become
[Kg], and the values of the mass matrix [M,] at subsystem r increase (or decrease) § times to become [M;] as shown in
egs. (17) and (18):

(K] = [K] +a[K] 17)
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[M;] = [M;] +B[M,] (18)

a and B being small values. The variable component dw?2 of the square of an angular natural frequency w;, is obtained as
follows:

dwz - a{Xn} sT [Ks] {Xn} s Bwi{xn} rT [Mr] {Xn} T (19)
! [(Xa} T M] {X,)

The following equation is obtained multiplying both sides of eq. (19) by 1/w3:

dw?, a {Xp} sT [Ks] {Xa} s- 6‘*’?1 {Xa} rT [M] {Xq}(
= (20)
w121 wle{xn}T[M] {Xq}

In eq. (20), {Xn} TIKs] {Xn) s and w? {Xp} . T[IM;] {X,} , are respectively twice the potential energy (strain energy)
at subsystem s and the kinetic energy at subsystem r in the initial structural design. Hence, those have positive values.
w2 {Xy) T[M] {X,} is twice the maximum kinetic energy in the complete structure which also has a positive value.

The following rule is established from eq. (20): when the design change is conducted so that the rigidity is increased
(that is, o has a positive value) / decreased (that is, a has a negative value) at the member or the element which has the larger
potential energy distribution, or the mass is decreased (that is, § has a negative value) / increased (that is, § has a positive value)
at the member or the element which has the larger kinetic energy distribution, the natural frequency increases / decreases
more effectively.

2. 3.2 Relationships between design sensitivity coefficients and energy distribution rates’
The maximum potential energies stored in the whole machine structure and in the spring element with spring stiffness
k at point J at the nth natural mode are denoted as V, and Vj,, respectively. The design sensitivity coefficients of the
natural frequency w, and the damping ratio {, at the natural mode with respect to spring stiffness k have the relation with
the potential energy distribution rate, Vy,/Vt,, as shown in the following equations.

dw w? Vi

kv 1)

ak % Vi

Vin
¢n - §n (__J___) (22)

A similar relation for the modal flexibility at point C is derived when the modal flexibility at a natural mode is far
greater than that at any other natural mode (ref. 3):

of f, \"
n(C, C) ~ n(C, C) ( Jn ) (23)
dk k Vin

In this case, the modal flexibility at the natural mode can be decreased by increasing the spring stiffness of the spring element
having the high potential energy distribution.

2.4 Information of Static Displacement and Internal Vibratory Force

(i) Static displacement

It is assumed that a machine structural model is installed in a hypothetical system T which is filled with a substance
having'a sufficiently small rigidity, as shown in Fig. 2. Now, two points, P, and P,, are chosen on the machine structural
model, and between the two points a thin circular tube (or a thin square bar) is conceived. Then, it can be considered that
a circular tube (or a square bar) member exists between points P; and P,.

When the evaluative parameter is the direct static compliance fy(c, ¢y at point C, the design sensitivity coefficient
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of fy(c, ¢y with respect to the spring stiffness kp in the axial direction of the member between points P, and P, is obtained
as follows:

ofscc, o) _y Xc - (Xp,- Xp,)

2 __ g2 24
oy v, ) s(C. P) (24)

where Xc is the relative displacement between points A and B caused by the static force at point C, Xp, and Xp, are the
displacements at points Py and P, in the axial direction of the member between points P, and P,, and V is the total strain
energy of the structural model at the displacement state; fscc, p) is the cross static compliance between points C and P. As
understood from eq. (24), the design sensitivity of the direct static compliance fs(c, c) with respect to a hypothetical spring
between two points having the largest relative displacement is greatest. Hence, the displacement distribution on the machine
structural model can be used as the information for adding an elastic member when the static compliance is required to be
decreased.

(ii) Internal vibratory force

When the internal vibratory force at a structural member or a joint is small, it can be understood that the member or
the joint has a small effect on the vibrational characteristics. If the force is negligibly small, removal of the member or the
joint may have negligible influence on the dynamic characteristics.

On the other hand, when the internal vibratory force Fy is great at a joint, the following two cases exist:

(1) the potential energy distribution rate at the joint is great,

(2) the potential energy distribution rate at the joint is small.
In case (1), the joint has a great effect on the vibrational characteristics, and even small changes of the joint design variables
bring about a great change of the characteristics. In case (2), such small changes of the joint design variables cause little change
of the vibrational characteristics. Great changes of the joint design variables are necessary for a great change of the character-
istics.

The relation on the frequency domain between the excitational input force F g and the internal vibratory force Fy at a
joint similar to the relation between the excitational input force and the displacement shown in eq. (3), is obtained as follows:

F « h
L (=% Elm (25)
Fg m=1 w w
- (— ) +2i— ¢
m Wm

where hgjp, is the modal internal force coefficient at the mth natural mode. The value of hg ., is subject to very little change
due to variations in damping. Hence, values of hgjy, can be used for relatively evaluating magnitudes of internal vibratory
forces.

Spring stiffness ky of a spring element at a joint of a machine structural model generally has the relation with the
angular natural frequency co, at the nth natural mode and the modal internal force coefficient hgy, of the spring element as
shown in Fig. 3. Case (1) corresponds to the design at (hypothetical) point Q within the region S, while case (2) corresponds
to the design at (hypothetical) point H within the region T.

It can be understood from Fig. 3 that a joint spring element having a great internal vibratory force but a small potential
energy distribution rate has a great latent effect on the vibrational characteristics, although the value of the design sensitivity
coefficient at that design point is small.

2.5 Considerations on the Evaluative Parameters and Information for Design Improvement

The following concluding remarks are obtained for the evaluative parameters:

(1) As can be understood from eq. (8), the static compliance f, has a direct influence on the modal flexibility values
at natural modes.

(2) As can be understood from eq. (11), the design sensitivity coefficient of modal flexibility is influenced by the
characteristics at many other natural modes. This fact means that the modal flexibility f,, is determined by the systematic
balance over the complete structure. Hence, the modal flexibility needs systematic analyses.

(3) As can be understood from eq. (14), the design sensitivity coefficient of the damping ratio at a natural mode does
not include the influence of characteristics at the other natural modes. In an approximate sense, the damping ratio at a natural
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mode can be changed by adjusting only the characteristics at the natural mode.

(4) As can be understood from eq. (9), the design sensitivity coefficient of natural frequency w,, does not include
the influence of characteristics at the other natural modes.

Higher priority of evaluation must be given to the evaluative parameters which need systematic analyses. If evaluative
parameters which can be determined by the local effect are fixed before the systematic evaluation, a great improvement of
the product performance cannot be expected. From the above consideration, priority for evaluation of the frequency re-
sponse should be given in the order of (1) fg, (2) f,, and (3) ¢, and wy.

Features of other information for design improvement such as energy distributions, static deformation distributions,
and internal vibratory forces are as follows:

(a) In design changes based on energy distributions, it is not necessary to define a specific design variables. Parts of
the structure which need increased rigidity or decreased weight can be macroscopically grasped. In usual design practice,
first of all, it is required to know where the weak points (regions) in the structure are. In this case, evaluations based on
energy distributions (refs. 1 and 2) are effective.

(b) The static displacement distribution can be used as the information for adding elastic structural members.

(c) The magnitude of the internal vibratory force at a natural mode indicates the degree of influence of the structural
member or the joint on the vibrational characteristics. That can be used as a sort of sensitivity information.

3. STRATEGIES FOR GREATER IMPROVEMENT OF STRUCTURAL DYNAMICS

In usual design problems, many characteristic and evaluative factors often interact mutually. The relationships between
design variables and evaluative factors are very complicated. When the optimum design is required for such design problems,
many local optimum solutions often exist in the feasible design space. Therefore, it is very difficult to obtain a design solution
which brings about great improvement of the product performance. Table 1 shows the procedures which have been developed
for solving those problems. Based on the clarification of competitive and cooperative relationships between characteristics,
the procedures are divided into three phases as shown in Table 1 (ref. 5).

In the following, some technical strategies for greater improvement of structural dynamics will be described. Addition
of elastic members in Section 3. 1 can be used in the procedures of phases 1 and 2 in Table 1; addition of mass elements in
Section 3. 2 can be used in the procedures of phase 2 in Table 1; and substantial changes of joint design variables in Section
3.3 can be used in the procedures of phase 3 in Table 1.

The improvement or modification of receptance values is most difficult in structural dynamics. Hence, characteristics
related with the receptance frequency response will be mainly discussed.

3.1 Addition of Elastic Structural Members

In the procedures shown in Table 1, first of all, the static compliance is minimized. When sufficient reduction of the
static compliance cannot be attained by changes of design variables (such as cross-sectional dimensions of the structural mem-
bers), addition of new structural members are useful only if change in the framework is possible.

The procedures for decreasing the static compliance fyc, ) by addition of an elastic structural member are as follows:

Step 1. Detect points P, and P, having a negative value of the right side part of eq. (24) of which the absolute value is
maximum in the feasible region of the machine structural model.

Step 2. Define a thin member region between points P; and P,, and equalize the Young modulus of the member
element with that of the other structural members.

Step 3. Repeat the search for optimum cross-sectional design variables until the objective function converges. At each
iteration of the search, the locations of points P; and P, are slightly moved so that the right side part of eq. (24) has the
greatest negative value.

When the objective is to minimize the direct modal flexibility f,(c, c) at the nth natural mode at point C, eq. (13)
can be used as the design sensitivity coefficient with respect to the spring stiffness kp in the axial direction of the hypothetical
member between points P; and P,. The forementioned procedures for the static compliance can also be applied for minimiz-
ing the modal flexibility by transforming eq. (24) into eq. (13).

3.2 Addition of Mass Elements
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The design sensitivity coefficient of the modal flexibility f;(c, ¢y at the nth natural mode at point C of a machine
structural system with respect to the small hypothetical mass My at point I(such as shown in Fig. 2) is given in eq. (15).

The procedures for reducing the modal flexibility f(c, ¢y by means of the addition of a mass element are as follows:

Step 1. In order to detect a point where a mass element should be added, search for a point I having a regative value
on the right side part of eq. (15) of which the absolute value is maximum in the feasible region of the machine structural
system, and add a small mass element at point 1.

Step 2. If the modal flexibility f;(c, ¢) is sufficiently small or has reached the convergence point, the added mass
element is adopted for the final design. Otherwise, go to Step 3.

Step 3. Modify the point I so that the right side part of eq. (15) has a negative maximum absolute value, and increase
the magnitude of the mass at point I and return to Step 2.

3.3 Substantial Changes of Joint Design Variables

In a usual searching process for an optimum design solution, initial design variables are slightly changed so that the
objective function is most effectively minimized (or maximized). Hence, if an initial design variable has a low sensitivity for
changing the objective function and is widely different from the optimum solution, it takes a very long time to reach the
optimum solution, and the design variable often converges into some local optimum point without reaching the optimum
solution.

From the standpoint of static rigidity (that is, reciprocal of the static compliance), the rigidity of a joint is required to
be as great as possible. However, from the standpoint of dynamic characteristics, the rigidity of a point is required to have a
specific value or a value within a specific region in the following cases:

(i) when a change in the ratio f,/f; of the modal flexibility f,, to the static compliance f; is required,

(ii) when an increase of the damping ratio at the natural mode is required. =

When the spring stiffness of a joint in the initial design of a structural model has the value at point H as shown in
Fig. 3, the design sensitivity coefficient at the point is very small, and potential energy is scarcely stored at the spring. Hence,
the spring stiffness may not be changed largely to the region S, and a sufficient change of the vibrational characteristics cannot
be generated. In order to attain objective (i) or (ii), the spring stiffness at the joint should be reduced to the region S. If
the internal vibratory force at the spring element is large at point H, there is a high possibility to realize objective (i) or (ii)
effectively with this spring element.

The procedures for realizing objective (i) or (ii) are as follows:

Step 1. Detect a spring element having the great internal vibratory force but a small potential energy distribution rate
among spring elements of all the joints (the spring stiffness k; at the spring element has a value within the region T as shown
in Fig. 3).

Step 2. Decrease the spring stiffness k; to a value within the region S as shown in Fig. 3.

Step 3. Start the search for the optimum value after having reduced the spring stiffness k; to get a new initial value.

4. NUMERICAL EXAMPLE

The procedures described in Section 3 are demonstrated on the machine structural model shown in Fig. 4. Fig. 5 shows
the simulation model for structural analysis. At the initial design shown in Fig. 6(a), the spring stiffness values at joints J,,
J3, J3 and J4(see Fig. 5) were large enough for avoiding degradation of the static rigidity. The relative receptance frequency
response between points A and B in Y-direction for this initial model is shown in Fig. 7(a). The receptance value at the Ist
natural mode is very large, and the ratio f, /f; of the modal flexibility f, at the 1st natural mode to the static compliance f
is 0.96. The three kinds of procedures proposed in Section 3 were successively added on the same structural model.

4.1 Addition of an Elastic Member

The objective in this step is to decrease the static compliance f; by adding a circular tube within the shaded region in
Fig. 5. Fig. 6(b) shows the final design obtained according to the procedures described in Section 3.1. The receptance fre-
quency response for the design is shown in Fig. 7(b). The static compliance f; decreases from 2.36x 1076 m/N at the initial

design to 1.33x107® m/N. The incremental percentage of the total weight of the structural model by addition of the elastic
member is only 0.0134%.
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4.2 Addition of a Mass Element

The objective in this step is to decrease the maximum modal flexibility value at the 1st natural mode. A mass element
was added at point I of the model as shown in Fig. 6(c) according to the procedures described in Section 3.2. Fig. 7(c) shows
the receptance frequency response after the design change. The maximum modal flexibility value decreased by 6%.

4.3 Substantial Changes of Joint Design Variables

The objective in this step is to minimize the maximum receptance value over the whole frequency range. The modal
internal force coefficient hgj; of the 1st natural mode was large at the spring element in Y-direction of joint J,. The spring
stiffness k; of the spring element was 1.0x10% N/m. Since the potential energy distribution rate at the spring element was
very small (that means the design sensitivity coefficient is also very small), the spring stiffness k; was greatly reduced to the
value of 2.0x10°% N/m. After this spring stiffness value was set as an initial design variable of kj, the spring stiffness ky and
the damping coefficients of all joints (J; through J,) were determined so that the maximum receptance value was minimized.
Fig. 7(d) shows the receptance frequency response after the proposed procedures. By these procedures, two requirements
(i) great reduction of the ratio fy/f; of the modal flexibility f, at the natural mode having the greatest receptance value to
the static comprance f; and (ii) great increase of the damping ratio at the natural mode (decribed at Section 3.3) were simul-
taneously accomplished.

It can be understood from comparison of the receptance frequency response in Fig. 7(d) with that in Fig. 7(a) that

the proposed procedures are effective for greater improvement of the vibrational characteristics (the maximum receptance
value).

5. CONCLUDING REMARKS

Methodologies for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative
parameters were proposed. The features are as follows:

(1) Addition of elastic members and mass elements is carried out using information of displacement distributions and
design sensitivity analyses for altering the initial framework of a structural model.

(2) Substartial changes of joint design variables are conducted using information of internal vibratory forces and
potential energy distributions for the improvement of the poor initial design variables.
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Table

1. Procedures for the design optimization method based on clarification of competitive-coopera-

tive relationships between characteristics (ref. 5)

Design variables

Range of modeling, type of modeling
and analytical method

Phase

O Design variables of structural
1 members and elements having an
influence on the static rigidity

O Modeling for a structure on the
static force loop
o Static rigidity analysis

O Design variables of structural
members and elements and joint

O Modeling for a complete structure
O Vibrational analysis for an

Ph . . oo
ase 2 stiffnesses having no influence on undamped vibrational system
the static rigidity
o0 Damping coefficients of all joints O Modeling for a complete structure
Phase 3 O Vibrational analysis for a non-

proportionally damped vibrational
system
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DESIGN SENSITIVITY ANALYSIS OF ROTORCRAFT AIRFRAME STRUCTURES B
FOR VIBRATION REDUCTION

T. Sreekanta Murthy
PRC Kentron, Inc.
Hampton, VA

ABSTRACT

As a part of an ongoing NASA/industry rotorcraft structural dynamics
program, a study was recently initiated at Langley on optimization of
rotorcraft structures for vibration reduction. The objective of this
study is to develop practical computational procedures for structural
optimization of airframes subject to steady-state vibration response
constraints. One of the key elements of any such computational proce-
dure is design sensitivity analysis. A method for design sensitivity
analysis of airframes under vibration response constraints is pre-
sented. The mathematical formulation of the method and its implemen-
tation as a new solution sequence in MSC/NASTRAN are described. The
results of the application of the method to a simple finite element
"stick' model of the AH-1G helicopter airframe are presented and
discussed. Selection of design variables that are most likely to bring
about changes in the response at specified locations in the airframe is
based on consideration of forced response strain energy. Sensitivity
coefficients are determined for the selected design variable set.
Constraints on the natural frequencies are also included in addition
to the constraints on the steady-state response. Sensitivity coeffi-
cients for these constraints are determined. Results of the analysis
and insights gained in applying the method to the airframe model are
discussed. The general nature of future work to be conducted is
described.
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INTRODUCTION

Excessive vibrations have a detrimental influence on the
performance, operation and maintenance of helicopters. The primary
source of vibration in the airframe arises from the vibratory airloads
acting on the main rotor which are transmitted to the airframe at known
discrete frequencies. Vibration continues to be a problem in
helicopters despite considerable efforts to reduce it. The problem has
been attacked by the use of active and passive vibration control
devices, by changes to main rotor system and by airframe design. Use
of vibration control devices involves weight penalties. Alterations to
the rotor by modifying blade stiffness and mass distribution are being
studied. Airframes are designed to satisfy strength, vibration and
performance requirements. Dsign for vibrations is based primarily on
previous experience. Selection of the best airframe that meets all the
requirements, in particular the vibration requirements, is a difficult
task. It would appear that structural optimization tools, properly
brought to bear by the design engineer, would go a long way toward
achieving the goal of an analysis capability for designing a low
vibration helicopter.

The use of structural optimization in helicopter airframe design
for vibration reduction is a relatively new research topic and has
only recently been addressed. Work related to "optimization" of
helicopter airframe structures is contained primarily in references
l1-6. However, only references 5 and 6 use a nonlinear programming
approach. Sciarra (1) used a strain energy approach to guide
modification of a structure; Done (2) and Sobey (3) used the Vincent
Circle approach; Hanson (4) did a comparative study of the above two
approaches; Done and Rangacharyulu (5) and Miura and Chargin (6) used a
formal optimization approach for airframe design.

As a part of an ongoing NASA/industry rotorcraft structural
dynamics program, a study was recently initiated at Langley on
optimization of rotorcraft structures for vibration reduction. The
objective of this study is to develop practical computational
procedures for optimization of rotorcraft structures subject to
steady-state vibratory loads. One of the key elements in the
development of a computational procedure for airframe optimization is
design sensitivity analysis. A method for design sensitivity analysis
of airframes under steady-state response due to rotor-induced dynamic
lToads is presented. Constraints on airframe dynamic response
displacements and natural frequencies are considered. The mathematical
formulation of the method and its implementation as a new solution
sequence in MSC/NASTRAN are described. The results of the application
of the method to a simple finite element 'stick' model of the AH-1G
helicopter airframe are discussed. The paper concludes with a short
discussion of the direction future in-house work in this area is to
take.
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DEFINITION OF OPTIMIZATION PROBLEM

The airframe structure of a helicopter is subjected to steady-
state rotor-induced harmonic loads acting at the top of the rotor
mast. The loads, in general, have six components and occur at
frequencies which are integer multiples of the product of the number of
blades and the rotor rotational speed. It is assumed that both the
magnitude and frequency of the rotor loads acting on the airframe are
known and that they are constant during design modifications.

The airframe structure is assumed to have nonuniform stiffness
and mass distributions which are functions of the geometry of the
structural members. The design variables are taken to be the dimensions
which characterize the cross-sectional geometry of a member. In
particular, for a beam member having a solid rectangular cross-section
the design variable would be the depth and height. Selection of
design variables in a large airframe structure containing thousands of
members is a difficult task. An experienced airframe designer can
suggest candidate members that can be permitted to undergo design
modification and the extent to which they can be modified. Studies by
Sciarra (Ref.l) and Hanson (Ref.4) have provided some guidelines in
the selection of design variables. 1In particular it has been shown
that the design variables that are most likely to bring about changes
in the response at specified locations in the airframe are the ones
having maximum forced response strain energy. Using this criterion an
initial selection of design variables of an airframe can be made. In
general, any design change will introduce changes in dynamic response,
natural frequencies, mode shapes, static strength, weight, and center
of gravity location of an airframe and they in turn indirectly change
the performance characteristics of a helicopter as a whole. Therefore,
constraints have to be imposed on the allowable response characteristics
to restrict design changes within certain bounds. For the work reported
in the paper, only constraints on steady-state dynamic response
displacements and natural frequencies are considered.

To complete the definition of the optimization problem, an
objective function must be defined. This is not an easy task. Should
the airframe weight be the objective function or the dynamic response
displacement? If the former is selected as the objective function,
can the reduced dynamic response be achieved without increasing the
stiffness and hence the mass of an airframe? If the latter is the
objective function an optimizer may try to drive the response at a
point to zero which may not result in reduction of vibration at other
points on an airframe. Because this paper is limited to a study of
design sensitivity analysis, these additional considerations are not
addressed here.
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DESIGN SENSITIVITY ANALYSIS OF AIRFRAME

In this section formulation of design sensitivity analysis of an
airframe with constraints on steady-state dynamic response displace-
ments is presented and equations for determining the sensitivity
coefficients are given. Also, pertinent equations used in the study,
such as equations for airframe response analysis and expressions for
strain energy, are presented.

The equation of motion (state equation) for determining the
steady-state dynamic response is given in the Figure (1). The equation
is written in matrix form in terms of the coefficient matrices K
(stiffness), M (mass), C (damping), and F (force). The magnitude and
frequency of the force F are assumed to be known. Steady-state
response X occurs at the same frequency as the forcing frequency. The
unknown response vector X is obtained by solving a set of simultaneous
linearalgebraic equations. The equation of motion for the undamped
naturalfrequencies of an airframe is given. Expressions for modal
element strain energy and undamped forced response strain energy are
also given in the figure.

To determine the sensitivity coefficients for constraints on
the steady-state response X, the design variable b is changed by a
small amount db. The structural members associated with the design
variables will have new cross-sectional properties and new stiffness,
mass and damping matrices for the changed design. Thus, for a small
change in a design variable b, new K, M, and C are computed and a new
response is generated. The response x for the new design must satisfy
the equilibrium requirement h(b,x)=0. A linearized version of this
requirement is used to derive an expression for the sensitivity
coefficients 3x/3b as outlined in Figure (2). The matrices on the
left-hand side (LHS) of the equation for the sensitivity coefficients
are already known from the finite element analysis for a particular
design. In the right-hand side (RHS) the change in force due to a
change in design is assumed to be zero. Only the changes in the
stiffness, mass and damping matrices due to an increment in design have
to be computed. The matrices thus formed are assembled and solved as a
set of simultaneous linear algebraic equation for the unknowns 3x/db.
An incremental form of the equations for sensitivity coefficients is
also given in the figure. The size of the matrix on the RHS is
dependent on the number of design variables and number of forcing
frequencies used in the analysis. The sensitivity coefficients 3x/ab
are obtained in a matrix form with rows corresponding to the number of
airframe degrees of freedom and columns corresponding to the number of
airframe design variables. The number of matrices of 3x/3b depends on
the number of load cases considered.

302




IMPLEMENTATION OF SENSITIVITY ANALYSIS IN MSC/NASTRAN

NASTRAN is used in the helicopter industry for finite element
analysis applications, and therefore it was judged appropriate to
implement the sensitivity analysis in that program. A new solution
sequence to compute the sensitivity coefficients using NASTRAN Direct
Matrix Abstraction Program (DMAP) modules was developed. The
incremental form of the equation for the sensitivity coefficients for
constraints on steady-state dynamic response displacements was
implemented using the DMAP modules and incorporated into MSC/NASTRAN.
The solution for the sensitivity coefficients is obtained in the
sequence shown in Figure (3). The corresponding DMAP modules are also
shown there. The DMAP program uses the data about design variables and
constraints specified on NASTRAN bulk data cards (DVAR, DVSET, and
DSCONS). The data for the stiffness and mass matrices of the airframe
generated in a previous finite element analysis are retrieved from
the data base using module DBFETCH. Damping was not considered in the
current implementation. The program generates new cross-sectional
properties of structural members for an increment in design and
rearranges the intermediate data using module DSTA. Using modules EMG
and DSVGl, AK and AM are computed. The RHS of the equations for
sensitivity coefficients is assembled using module ADD. The equations
are then solved using the FRRD1 module to obtain the sensitivity
coefficients for the dynamic response constraints. Several other DMAP
modules, such as S$SG2, MODACC, SDR1, SDR2, DSMA, DBSTORE and LMATPRT,
are used for pre-and post-processing of data used in the solution
sequence and also for organizing the stiffness, mass and sensitivity
coefficient matrices in a partitioned form.

Numerical results for sensitivity coefficients for constraints
on steady-state dynamic response are obtained as follows. First, the
airframe dynamic response is obtained from Rigid Format 68. Then,
the solution sequence described above is executed.
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APPLICATION TO AH-1G HELICOPTER AIRFRAME
Description of the AH-1G Airframe:

The airframe structure of the AH-1G helicopter descibed in
references 4 and 7 was used for the sensitivity analysis application.
The airframe structure with its skin panels removed is shown in Figure
(4). The fuselage portion of the airframe is built around two main
beams which provide the primary vertical bending stiffness in the
fuselage structure. The main beams are tied together by the lower
horizontal floors, the forward fuel cell cover, and the engine deck to
give the fuselage lateral stiffness. The main rotor pylon provides the
structural connection between the main rotor and the fuselage. It is
attached to the fuselage through five elastomeric mounts and a 1ift
Tink. The 1ift 1ink is the primary vertical load path and is pinned to
the center wing carry-through beam. The engine, gun turret and the
landing gear are attached to the fuselage. The wings (not shown) are
designed mainly for carrying external loads and are attached to the
fuselage on either side. The tailboom is bolted to the fuselage with
four attachment fittings. The tailboom is of semimonocoque
construction having aluminium skins, stringers and longerons. The
vertical fin is connected to the tailboom through the tail rotor mast.

Elastic Line Model of the AH-1G Airframe:

A built-up finite element model of the AH-1G airframe structure
is available (Ref. 7). However, for the initial studies on sensitivity
analysis which are the subject of this paper, an elastic line or
'stick' model of the AH-1G airframe (Ref. 4) was used. The model is
shown in Figure (5). The dynamic characteristics of this elastic tine
model are similar to those of the built-up model of the airframe. The
fuselage, tailboom, wingas and rotor mast structure of the airframe were
modelled with beam elements. Scalar spring elements were used in the
pylon support structure. The engine and the gun turret mounts were
modelled as rigid bar elements. The NASTRAN finite element model] of
this airframe consists of 42 beam elements, 13 scalar spring elements
and 12 rigid elements. There are 56 grid points in the model for a
total of 336 degrees of freedom. After applying multi-point and
single-point constraints and omitting massless degrees of freedom, the
model reduces to one having 130 dynamic degrees of freedom. The
airframe mass, both concentrated and distributed, is lumped at the grid
points selected as the dynamic degrees of freedom. Structural damping
of the airframe was not considered.

The primary vertical vibratory force coming from the rotor acts
at grid point 55. The force has a magnitude of 1000 1b and a frequency
of 10.8 Hz ('2/rev').
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NUMERICAL RESULTS AND DISCUSSIONS

Numerical results from the application of sensitivity analysis
to a stick finite element model of the AH-1G helicopter airframe are
presented and discussed here.

Finite Element Analysis Results:

A finite element analysis of the elastic line model was made
using MSC/NASTRAN. The first few lowest natural frequencies obtained
for the model are - 3.02 Hz (pylon pitch), 4.22 Hz (pylon roll), 6.80
Hz (1st airframe lateral bending), 7.85 Hz (lst airframe vertical
bending), 16.70 Hz (2nd airframe lateral bending) and 17.10 Hz (2nd
airframe vertical bending). The mode shapes corresponding to the
vertical bending modes are shown in Figures (6 and 7). The first mode
(frequency 7.85 Hz) has two nodes (zero displacement) on the airframe
- one near the pilot seat and another near the middle of the tailboom.
The second vertical bending mode (frequency 17.1 Hz) has three nodes -
near grid points 6, 14 , and 28.

The steady-state response of the airframe due to vertical
excitation at a frequency of 10.8 Hz is shown in Figure (8). The
response shape has two nodes (points of zero displacement) - one near
grid point 2 and another near grid point 22. A1l other points on the
airframe vibrate at various levels of acceleration depending on the
amount of displacement of the airframe from the undeformed position.

The element strain energies associated with the forced response
were also calculated. The distribution of strain energy in the
fuselage and tailboom elements is shown in Figures (9-10) and discussed
in a later section.

Sensitivity Analysis Results:

Using the strain energy criterion, the structural members which
are most likely to influence the natural frequencies and the response
were identified. Elements in the rear part of the fuselage and most of
the elements in the tailboom were identified as likely candidates. The
cross-sectional properties of the elements identified were related to
design variables. In particular, design variable 'b' of the beam
element was related to the area and moment of inertia of the cross-
section (which are linear and cubic functions of b). A small increment
was given to b to compute a new value of the design variable.

Constraints on the steady-state dynamic response displacements
were imposed at the gun turret and pilot seat grid point locations
(4 and 8, respectively). Because only vertical responses were of
interest, only the vertical displacements were constrained. Although
constraints on lateral and torsional displacements would ultimately
also be required in a realistic design analysis, they were not
considered in this study. However, they can be easily included.
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The sensitivity coefficients for the selected constraints were
obtained from the MSC/NASTRAN DMAP program which was discussed
earlier. The sensitivity coefficients are plotted in a bar chart
format in Figures (11-14). The numerical value of a coefficient
indicates the amount of change in constraint value due to a small
(positive) change in the design variable (identified by the element
number, which also denotes the design variable number). A
positive/negative value of a sensitivity coefficient means that an
increase in the design variable results in an increase/decrease in the
constraint value. To physically interpret the results it is useful to
refer to the sensitivity of displacements (3x/ab) rather than the
sensitivity of constraints (ah/3b). These sensitivities differ only by
a constant.

The results shown in Figures 11-12 indicate that the
sensitivity coefficients related to the tailboom elements have
magnitudes which are large compared to the fuselage elements. Consider
the sign of these coefficients. 1In the tailboom region the
coefficients are negative, whereas they are positive in the fuselage
region. This means that an increment in a design variable associated
with the members in the tailboom decreases the displacement at the
pilot seat (and vice-versa) whereas an increment in a design variable
in a fuselage member increases the displacement at the pilot seat (and
vice-versa). This shows that the tailboom must be stiffened and/or the
fuselage must be softened to reduce the dynamic response displacement
at the pilot seat. The sensitivity coefficients obtained for
constraints at the gun turret location are shown in Fiqures 13 and 14.
The tailboom elements have coefficients which are an order of magnitude
higher than those for the fuselage elements. This indicates that the
tailboom elements should be significantly stiffened. The coefficients
are negative for the fuselage and all elements in the tailboom (except
for element number 1213 which has a positive coefficient). This
suggests that the elements of the tailboom and the fuselage (except
1213) require stiffening to reduce the dynamic response at the gun
turret location. However, element 1213 requires a reduction in
stiffness. Hence, to satisfy the vibration constraint at the gun
turret location a stiffening of the airframe structure is required,
with an element with reduced stiffness at the junction of the fuselage
and the rotor mast (grid 12) of the airframe. 1In summary, the tailboom
requires a significant increase in stiffness to reduce the dynamic
response at both the pilot seat and gun turret locations. Thus, rather
straightforward considerations have provided the information about the
portion of the airframe to be modified, order of magnitude of
modification required, and the direction in which the modification
(stiffen or soften) is required.
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As the forced response of the airframe is a function of the
natural frequencies and mode shapes of the structure as well as the
excitation forces, any modification to the design variables to control
the response will also bring about changes in the natural frequencies.
also required. Constraints on the two lowest vertical bending modes
(natural frequencies 7.85 and 17.1 Hz) of the airframe were considered
here. Upper and lTower limits on the first mode were specified at
7.0 and 8.5 Hz, respectively, and at 12.0 and 18.0 Hz, respectively,
for the second mode. MSC/NASTRAN Rigid Formats 63 and 53 were used to
obtain the sensitivity coefficients for the natural frequency
constraints. The results are discussed in the following paragraph.

The sensitivity coefficients for the constraints imposed on the
natural frequencies are plotted in Figures 15 and 16. The coefficients
obtained all have positive values. The fiqures indicate that the
coefficients related to the tailboom elements are large compared to
the coefficients for most of the fuselage elements in the case of the
first vertical bending mode. This shows that tailboom design strongly
influences the natural frequency of the first vertical bending mode.
In the case of the second vertical bending mode, some (aft) fuselage
elements and (rear) tailboom elements have sensitivity coefficients
larger than other elements of the airframe, and therefore they have a
strong influence on the frequency of that mode. 1In both cases the
coefficients are positive indicating that stiffening the elements
increases the natural frequency, as might be expected.

Interpretation of Results:

The calculation of sensitivity coefficients for a set of
condtraints often constitutes a major computational effort in an
optimization study. The sensitivity analysis results together with the
dynamic characteristics of the airframe must be interpreted carefully
to guide iterations to a low vibration design. Proper interpretation
of the results will provide insight into the nature of the
modifications required for the airframe and the feasibility of such
modifications. The results presented above are interpreted and
discussed below.

The steady-state response of the airframe is mainly due to
excitation of the two lowest vertical bending modes (7.850 and 17.1
Hz) by the vertical force (10.8 Hz). The response shape resembles the
first vertical bending mode, with the tailboom responding significantly
more than the fuselage. The large motion of the tailboom may be
attributed to the fact the tailboom is relatively soft compared to the
fuselage. Therefore, to shift the natural frequencies and thereby
change the response, the stiffness of the tailboom should be suitably
changed. The sensitivity results also suggest that changes should be
made to the tailboom design, that is, to increase the tailboom
stiffness. Thus, the results on dynamic characteristics and
sensitivity analysis are complementary.
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Consideration of strain energy results together with
sensitivity results can also be meaningful. 1In particular, compare the
distribution of element strain eneray densities in the forced response
mode shape with the distribution of sensitivity coefficients in the
airframe. The element strain energy densities in the tailboom are
higher than those in the fuselage elements. This comparison indicates
that elements with higher strain energies have higher magnitudes of
sensitivity coefficients. Therefore, it would be beneficial to use
both strain energy information and sensitivity results in the
optimization procedure. There could be two possibilites here - one is
to use the strain energy results to select design variables; another is
to use the strain energy result to modify the design instead of using a
more costly design sensitivity analysis. The later possibility is yet
to be investigated. 1In this regard an explicit relation between the
strain energy of elements and sensitivity coefficients would be
useful.

The overall dynamics of the airframe has some bearing on the
optimization of an airframe for vibration reduction. 1In a conservative
dynamic system, the work done by external forces on a flexible
structure is transformed into strain energy and kinetic energy. In a
nonuniform structure, the distribution of these energies depends on the
stiffness and mass distributions. Often a portion of a structure (for
example, the tailboom of the AH-1G helicopter) may vibrate
significantly more than other portions. In a sense the portion of the
structure which vibrates most acts 1ike a vibration absorber.
Therefore, if one tries to reduce vibration in a certain portion of the
airframe, some other portion of the airframe will vibrate excessively.

From the above discussion, the following possibilities offer
themselves for reducing vibrations in the fuselage:

1. Soften the tailboom so that it acts like a vibration
absorber.

2. Stiffen the tailboom and soften the fuselage to reduce
vibration at the pilot seat.

3. Stiffen the tailboom and the fuselage and provide a soft
spring-like interface structure between them to reduce
vibration at the gun turret.

Clearly, these possibilities are not realistic in practice.
However, they do suggest the types of modifications reauired for the
airframe to satisfy the design constraints. The magnitudes of the
modifications required can be obtained by interfacing the sensitivity
analysis program with an optimizer. Careful selection of limits on
design variables and constraints is needed, otherwise an optimizer may
drive the design to an unrealistic configuration. Also, other types of
constraints that must be imposed in a realistic airframe design should
be included in the study. Therefore, the airframe optimization problem
must be viewed in a broader perspective by considering the total
helicopter system and not just a part of it.
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CONCLUSIONS

An initial study on design sensitivity analysis of rotorcraft
airframe structures for vibration reduction has been made. A
mathematical formulation for sensitivity analysis for constraints on
steady-state forced response displacements was presented. The
equations for the sensitivity coefficients were implemented as a new

solution sequence in MSC/NASTRAN. <Calculation of sensitivity
coefficients was made using an elastic line model of the AH-1G

helicopter

airframe. The results of this preliminary study indicated

the following:

1.

Sensitivity coefficient results indicate that tailboom
elements significantly influence the vibration response at
the pilot seat and gun turret locations.

Sesitive elements of the airframe have higher element strain
energies.

The first two vertical bending modes of the AH-1G airframe
have a significant influence on the vertical response of the
airframe under '2/rev' vertical rotor excitation loads.

Interpretation of the airframe dynamic characteristics
together with the sensitivity analysis results has brought
out the essential nature of modifications required in the
AH-1G airframe to reduce vibration.

DIRECTIONS FOR FUTURE WORK

The initial study on airframe sensitivity analysis indicates
that there are several important aspects that must be considered.
Based on the study, the following areas are identified for further
investigation:

1.

PN

Consider constraints on static strength, forced response
and natural frequencies simultaneously.

Interface an optimizer with the design sensitivity analysis
Study built-up finite element models.
Include airframe structural damping.

Include the effect of change of excitation force due to
change in airframe flexibility.

Address problem of disjoint design space in forced

response constraint formulation.

Consider a broader range of constraints (center-of-gravity
movement of airframe, crash-loads, etc.,) for more effective
use of optimization in actual helicopter design.
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PERTINENT EQUATIONS
EQUATIONS FOR STEADY~—STATE RESPONSE

MX + CX + KX = F
iwt iwt

Where F = f e X=xe

EQUATIONS FOR NATURAL MODES

MX + KX = 0 .
twl

Where X = x e

UNDAMPED FORCED RESPONSE ELEMENT STRAIN ENERGY

1 T
U= P X ke X
MODAL ELEMENT STRAIN ENERGY
T
U= 12 X ke X
Figure 1.

EQUATIONS FOR  SENSITIVITY COEFFICIENTS

CONSTRAINTS ¢ ON STEADY—STATE DYNAMIC DISPLACEMENTS:

I X]
¢ =

- 1 € 0
[ %]

STATE EQUATION FOR DYNAMIC DISPLACEMENTS:
2

h(bx) = (—@ M + iwC + K) x — f = 0

Linear approximation to change in h due to change in b:

dh dh dx
dh = —— 3db + dx ALSO, dx = db
db dx db
EQUATIONS FOR SENSITIVITY COEFFICIENTS:
2 A of 2 M c 3K 0
(—0M + wC + K) = — (-0 — + iWw— + — ) x
3b db 3b b db

2 2
( —OM +iwC + K) x

Af - (—WAM + WAC + 4K) x°

Figure 2.
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SENSITIVITY ANALYSIS FOR DYNAMIC RESPONSE USING
MSC/NASTRAN DMAP SOLUTION SEQUENCE
SOLUTION SEQUENCE NASTRAN MODULES

READ CONSTRAINTS AND

DESIGN VARIABLE DATA
1

GET M,K,x.f,w,C DBFETCH,PARAM
FROM DAT/;\BASE TABPT,MATPRT
DSTA,DBSTORE

COMPUTE SECTION PRO-
| PERTY_FOR _NEW_DESIGN

COMPUTE K, M, f,c

FOR CHANGE IN DESIGN EMG,DSVG1
I
COMPUTE ADD,PARAML,
Af —(~W AM+i0 AC+ AK) PARAMR
|
SOLVE FOR SENSITIVITY SSG2,FRRD1,MODACC
COEFFICIENTS %5 SDR1,SDR2,DSVG3,DSMA

DBSTORE,LMATPRT
Figure 3.

AIRFRAME STRUCTURE OF THE AH-1G HELICOPTER

"’/’

Actual helicopter
airframe structure
(skins removed)

¥ Main rotor pylon

transmission case:
mount (4)

Center wing

carry through beam

(lift beam)

Figure 4.
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56 grid points / K
55 structural elements ; 2;
70 analysis degrees of freedom /12

% A=f(b)
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Figure 5.

FIRST VERTICAL BENDING MODE OF AIRFRAME CFREQ.=7.86 HZ)

Figure 6.
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SECOND VERTICAL BENDING MODE OF AIRFRAME (FREQ.=17.1 HZ)

7

Figure 7.

FOR RESPONSE MODE OF AIRFRAME
EXCITATION - 1088 FREQ. 10.8HZ

Figure 8.
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SENSITIVITY OF DYNAMIC DISPLACEMENT
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ON SINGULAR CASES IN THE DESIGN DERIVATIVE

OF GREEN'S FUNCTIONAL®

Robert Reiss
Howard University
Washington, D.C.

SUMMARY

This paper extends the author's prior development of a general abstract
representation for the design sensitivities of Green's functional for linear
structural systems to the case where the structural stiffness vanishes at an
internal location., This situation often occurs in the optimal design of
structures. Most optimality criteria require that optimally designed beams be
statically determinate. For clamped-pinned beams, for example, this is
possible only if the flexural stiffness vanishes at some intermediate location.
The Green's function for such structures depends upon the stiffness and the
location where it vanishes. A precise representation for Green's function's
sensitivity to tne location of vanishing stiffness is presented for beams and
axisymmetric plates.

INTRODUCTION

This paper is concerned exclusively with the linear self-adjoint differ-
ential equation, represented in abstract form by

Lu = T*

ET u = f in Q (1a)
Here T and T* are operators which are Ly(&) adjoints of each other, E is a
stiffness operator which is symmetric with respect to the Lp(Q) inner product,
u is the response function and f is a specifiec disturbance. The open region
& ¢ RD is bounded by 23%.

Appropriate mixed inhomogeneous boundary conditions are appended to
equation (la). These are

BY u

g on 3%

(1b)
B*Y*ET u

|

h on 2

where ofi1 Udfip = 98 and an1r\ 9o = ¢. The operators Y and v* map functions in
the domain of L into functions defined on 9Q¢ and 9Qp, respectively. And the
operators B and B* map functions defined on 9§y and 9%y, respectively, into
functions defined on 9Qq and 90». Examples of the operators appearing in

equations (la) and (1b) can be found in reference 1 for a number of specific
applications.

"This research was supported by the Howard University Large Space Structure
Institute through Grant No. NAC-383 from the NASA Langley Research Center.
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The stiffness operator & frequently depends upon one or more design parame-
ters, which are collectively denoted by S. The operators T and T* are gener-
ally differential operators which are independent of the design. The boundary
operators may or may not be design dependent. There are two important classes
of problems for which the boundary operators depend upon S. One class of such
problems is usually referred to as shape optimization problems. Here, the
boundary is the design variable, and consequently the boundary operators are
necessarily design dependent. The other class of such problems occurs in
structural optimization theory whenever optimality requires that the stiffness
vanish somewhere in the interior of Q. In this case, equation (1b) must also
include an internal boundary where certain jump and/or continuity conditions
are specified. This latter class of problems is the primary concern of this
paper.

GREEN'S FUNCTION AND FUNCTIONAL

Ocen and Reddy (ref. 2) have shown the operator P, which consists of the
spatial operator of equation (la) and the boundary operators of equation (1b),
will be self-adjoint if the following integration by parts formula is satisfied

(Tu,ETV), = (u,TYETv) = (vu,B*Y*ETv) = - (Bvu,Y*ETv) (2)
Q Q 392 Ql
for every u and v in the domain of P. In equation (2), (.,.) denotes the usual
Lo inner product and the appended subscript the domain of integration. Thus,
for example, (-,*) Q denotes the Ly (92 ) inner product. In the remainder of
this paper, it wil? be assumed that the operators specified in equations (la)
and (1b) do indeed satisfy equation (2).

The solution to equations (la) and (1lb) can now be obtained in terms of
Green's function G, corresponding to the operator P, i.e.

oo . * Cnpe
u (f',(x)Q + (g,Y ETG)aQI + (n,\b)agz (3)

Equation (3) may be routinely derived by noting that G(x,y) satisfies
™ ETG(.,y) = 6y 1in @ (La)
and boundary conditions

BYG(-,y) = 0 on 239;

%% (4b)
B*Y'ETG(-,y) = 0 on 3@

where éy represents the Dirac distribution with a singularity at the location y.
Upon taking the Lo(Q) inner product of both sides of equation (l4a) with u and
integrating the result twice by parts according to equation (2), equation (3)
immediately follows. Several illustrations of equation (3) have been derived

by Roach (ref. 3) for specific operator equations.

Green's function G(x,y) is defined on the Cartesian product space Q x Q
and is generally singular when x=y. If any of the operators appearing in
equation (4) depend upon the design variable(s) S, then G is a functional of
the design S. Reiss (ref. 4) recently presented a compact formula for the
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design derivative of G when E is the only operator appearing in equations (la)
and (1b) that depends upon the design S. For, in this case, let S and S + AS
denote two designs and define AG by

AG(x,y;S,A8) = G(x,y;S+AS) - G(x,y,S) (5)

It immediately follows from equations (4a), (4b) and (5) that

T*ETAG = F in @

BYAG

[}

0 on 93 (6)

B*Y*ETAG

[}

H on 9%

where

1

F = - T*AET(G+AG)

(7)

H = - B*Y*AET(G+AG)

A cursory comparison of equation (6) with equation (1) shows that the so-
lution for AG is immediately specified by equations (3) and (7); thus

AG = = (T*AET(G+AG),05

- (B*Y¥AET(G+AC), YG) (8)
3y
After applying the integration by parts formula (2), the variation AG simpli-
fies to

AG = - (TG, AET(G*AG))Q (9)

Equation (9) is an integral equation for 4G. Considerable simplification re-
sults if E is Gateaux differentiable with respect to the design. In this case,
by restricting the design variation AS to be infinitesimal, AE is also infini-
tesimal and equation (9) may be linearized, i.e.,

8G = - (TG,6ETG)Q (10)
In equation (10), the symbol A has been replaced by & in order to signify

linearization. Equation (10) represents the design sensitivity of Green's
functional.

SINCULAR DESIGNS

Beams

As stated at the outset, the primary focus of this paper is on designs
whose stiffness vanishes somewhere in the interior of Q. For beams whose
boundary conditions are specified by (1b), the stiffness vanishes, at most, at
two internal locations. Let Xo denote the typical location for which S(x4) = 0.

|
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In terms of conventional notation for beams, the internal boundary con-
dition at X, is the prescription of zero moment, while the matching condition
is zero jump in both the shear force and the response. Thus

S(X) Gyx(X,¥3%g) | y=x = 0 (11a)
(6]
[[(S(X)GXX(X’y;XO))X]JX=XO = 0 (11b)
[LG{x,yix5)1]yax =0 (11e)
o]

where the subscripts denote partial differentiation with respect to the
indicated arguments, and [[- 1] denotes the jump in the quantity within the
double brackets. In addition, at the extremities of the beam, G must meet the
static and kinematic boundary conditions specified by equation (4b).

If the neighboring design S + 65 also vanishes at x5, then &S is specifiec
by equation (10). If, however, S + &S vanishes at x5 + 8x,, then 8G depends
explicitly upon 8xq as well as 8S. Since the sensitivity of G with respect to
8§S is determined by equation (10), it remains to investigate the sensitivity of
G to variations in x,.

With x, treated as the design variable, the counterpari to equation (5)
becomes

0G(X,YiXg,0%g) = G(X,y,Xg*dXs) = G(X,y;Xg)
which, upon linearization, simplifies to

8C = Gy (X,YiXg) 6Xq (12)

(o]

It is important to note that G will generally have a slope discontinuity at xg,
but G + 6G will have a slope discontinuity at x4 + 8x5. It follows from
equation (6) that &C satisfies

(S8Gyx)xx = © 0 < x<Xg, Xo <x<0L (13)
plus appropriate homogeneous boundary conditions at x=0 and L. Due to the
shift in the internal boundary x,, care must be taken in determining the in-

ternal matching conditions for 8G. While G satisfies eguations (11ia), (11b)
and (llc), G + 8G must satisfy

S(C+8C)xx | x=x + gx = 0 (1ka)
(o] (o)
[[(S(G+6G)XX)X]]X=X + Sxo =0 (lub)
o]
[([G+6G))gux + 6x =0 (l4e)
(o] (o)

lNext, SGyy is expanded in a Taylor series about Xo to get

SG + (SG_) 8x

xx]xo + 6x0 N SGxx|x=x0 XX xlx o

which, by virtue of equations (lla) and (1l4a), becomes

- 566
B R L0 (15a)




Similarly, by expanding (SGyy)y and G about x = X5, and making use of equations
(11b), (l1e), (13), (1i4b) and (lic), the following jump conditions are ob-
tained:

[[Sécxx)x]]x=x = 0 (l5b)
(o]
EEGG]]X=XO = = [[Gx]]szoéxo (150)
The sensitivity 6GC is completely specified by equations (13), (1l5a),
(15b), (15c) and the boundary conditions at x=0C and x=L, After multiplying

both sides of equation (13) by G and integrating the result over the domains
0 < x < xp and X5 < x < L, it is found that

[

§G(z,y) L[G(x,z)(S(x)GGxx(X,y))x]]xzxo

[[Gx(x,z)s(xmcxx(x,y)]JX._.XO

+

[[S(x)Gxx(x,z)GGx(x.y)J]x=xo

LLCS(x)Gyxx(x,2) )4 6G(x,y) Mgy (16)
o]

Equation (16) can be considerably simplified by making use of the jump con-
ditions (1la,b,c) and (15a,b,c). The first term on the right hand side of
equation (16) vanishes by virtue of equations (llec) and (15b); the third term
also vanishes as a consequence of eguation (lla). Now, substitution of

{

\

’
1b) AanAd (1TEAY intn the

viey !l £y N O S R T P I I PURE Sy S gy AmA An~viand T AnA 1
equaltion \idd) LNLto uie SeCONU Lelll, atiu cyuacviunos L0 anad V«_-C, 14auvle LA

fourth term yield
8G(y,z) = - {[[Gx(x.z)]]xzxo Qlxg,y)
+ [LOx(x,¥) Mgy, Glx0,2) }6xo (17)
where Q (xq,y) is the shear force at x5 due to a unit load at y. Thus
Axg,ry) = = (8(x) Gxx(x,y))x\x=xo (18)

The design derivative of Green's function, obtained from equations (12) and
(18), becomes

aG(x,y;xo)/on == [[GX(X’Z)]JX“XO C(xoyy)

- [[Gx(x,y)]]X=xo AUxp,2) (19)

Axisymmetric Circular Plates

Thin isotropic elastic plates, like the elastic beams considered above,
obey the fundamental equations (4z) and (4b). Consequently, the sensitivity of
Green's function with respect to changes in the plate stiffness (thickness)
must satisfy equation (10). For simplicity, only ciruclar plates subject to
axisymmetric loads and boundary conditions are considered. The plates may be
full or annular, and the inner and outer boundaries of the plate will be de-
noted by a and b, respectively. For full plates, a=0. If the stiffness of the
plate vanishes over a circle of radius r, and this radius is also a design pa-

rameter, then the sensitivity of G with respect to ry also must be determined.
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At a circle of vanishing stiffness, the radial bending moment vanishes,
and both the shear force and the response are continuous. Thus the counter-
parts to equations (1la), (11b) and (1lle) are, respactively,

S(r){rGpp(r,ziry) + vCp(r.C;Po)}|r=Q)= 0

Lr(S(r)(rGpp(r,zirg) + VGp(r,zirg)))y (20)
= S(r)(Gp(r,z;rg) + errr(r,c;ro))]]p=C) =0

[[G(r,c;ro)]]rz,«o =0

where v is Poisson's ratio. And, of course, Green's function must still satis-
fy the mixed boundary conditions (Lb).

Since ro 1s now the design variable, equation (12) is replaced by
8G = Gp (r,g;ryl)éry (21)
o

where d8rg denotes the infinitesimal shift in the location of vanishing stiff-
ness.

It is desired to obtain an explicit representation for ¢G, analogous to
equation (17). Toward this end, it is noted that &G satisfies L8G=0 and there-
fore

(8(r&Gpp + v86Gp))pp = (S(r~16Gp + V8Gpp))p = U (22)

for a<r<rgy and ro<r<b. Also §G satisfies the same boundary conditions at a and
b as does G.

Before considering the jump conditions for §8G at r=rqs, some notational
simplication can be obtained by noting that G(r,z;ry) represents the response
at the circle of radius r due to a unit load distributed along the circle of
radius ¢. Accordingly, let M (r,g;irg) and Q (r,z;ry,) denote, respectively, the
radial bending moment and shear force per unit length along the radius r due to
the same unit load acting along the radius ¢. Thus equations (20) simplify to

rM (r,c;ro)lr=r0= 0 (23a)
[[5(r,c;r0)]]r=po = 0 (23b)
[[G(r,c;ro)]]pzq) =0 (23c)

For the sake of completeness, it is noted that I and Q are related to G through
rM = - S(rG + G )
rr r
re = = r(S(rG_ + vG )) (24)
rr r
+ 5(G + vwrG )
r rr

For the varied design whose stiffness vanishes at ro * ér , the jump con-
ditions analogous to (23a), (23b) and (23e¢) are, respect1vely,
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r& (Y’,C;ro) + r‘éf‘_”.(r‘.ﬁ;r‘o)lp=p + 80 = 0 (253)
[o) o]
[[r‘é(r‘,c;ro) + ré@(rsc;ro)]]p—_-rz) +6r\o= 0 (25b)

[[G(Y‘.C;r‘o) + (SG(P’C;Po)]]p:r +§p = ¢ (25¢)
(8] (o]
By expanding rﬁlr=r +opy T r=r +¢&p and G| p=p +gp 1n Taylor series about
r<rg, and simplifying the result using equations €5af, (25b) and (25¢), the
Jjump conditions

réﬁ]rzro « = (PH)p| pop_ 67 (26a)
[[réQ]]pzpo-k (Sr\o= 0 (26b)
[[6G]]p=ro = = [[Gr]]p:r\o Gro (260)

are readily obtained. The quantities &M and 65 are implicity defined through
equations (24). Thus

| r&M = - S(réGpp + v8G,)
réC = = r(S(réGpp + v&Gp))p (27)

+ S(8Gp + vréGpp)

The sensitivity ¢G may now be determined explicitly by multiplying both
sides of equation (22) by G and integrating the result from r=a to r=b, Thus

| §G(z,&) = + [[rQ(r,z)66(r,&)1]pap
‘ (o)
- [[rﬁ(r.C)dGr(r,E)]]pzn)
+ [LGp(r,g) réll(r,e) 1lp.p
o
= [[G(rtc)réQ(rtg)]]rzro (28)
The second and fourth terms on the right hand-side of equation (28) vanish bty
virtue of equation (23a) and equations (23c) and (26b), respectively. Moreover,
equations (26c) and (26b) transform the first term into
- rQ(r,2)| pap [LGp(r,6)13pap org
(o] (o]

while the third term, obtained from equation (26a) and the equilibrium
equation, becomes

= PQ(P,€)|r=r\ ?[GP(F’C)]]P:P 61"0
(o] o]
Therefore, the design derivative 0G/ors is given by

P0(88i0) 300 = - {rolrg, )L Lop(r,6) 1 . s
o

+ roQ(rg, ) [Gplr )V per, | (29)
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APPLICATIONS TO OPTIMAL DESIGN

The usual method of obtaining structural optimality criteria associated
with specific cost functionals relies on developing an appropriate variational
formulation of the field equations (la) and (1b). Moreover, each cost
functional requires a different variational formulation. In contrast to the
historical approaches, the design derivatives specified by equations (10) and
(17) or (29) can be used directly to determine the optimality criteria associ-
ated with any cost functional without the need of a variational formulation.

In order to illustrate the foregoing claim, structural optimality criteria will
be derived for two different cost functionals: minimum response and minimunm
compliance.

The optimality criteria associated with the design of a fixed-weight
structure for minimum response at a specified location is considered first.
Boundary conditions and loads are assumed known., It is desired to obtain a
complete description of the design variable S including its singular points
(locations of vanishing stiffness). Shield and Prager (ref. 5) obtained the
optimality condition for this problem only after discovering the principle of
stationary mutual potential energy. They did not address the guestion of locat-
ing the singular points. However, at least one author (ref. 6) incorrectly
assumed that such points can be obtained by requiring the response to be con-
tinuously differentiable everywhere.

Attention is now directed toward equation (la) and (lb) with g = h = 0.
According to equation (3), the solution for the response is

u= (f, G}
Let the location y be specified and u(y) be a minimum. Thus

uly) = (£ (), G(+,y))q (30)
whence

su(y) = (f(.), 6G(-,y))Q (31)
For the moment, it will be assumed that S is not singular anywhere. After sub-

stituting equation (10) into equation (31) and changing the order of the resul-
ting double integration, equation (31) becomes
suly) = - (Tu, & §STG(.,y) >
u y = Uy, as 6 (1(-,}’ )BQ (3 )

The volume constraint may be easily handled through a Lagrange multiplier. Let
v(S) denote the specific volume and A a Lagrange multiplier. Then the con-
dition éu(y) = C for all designs consistent with the constant volume constraint
requires that the augmented functional

. 9E i LAY
- (Tu, 55 OSTG (-,y))Q * A (1,335 8S)g =0
for all variations §S. Thus the optimality condition
JE

u. 98, . =\ v
Tu. oS TG(.,y) = A 7S (33)
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follows immediately. For beams, the equivalent to equation (33) was obtained
in reference 5. The constant A appearing in equation (33) can be determined
from the fixed-volume constraint.

It was stated earlier that, in many applications, there can be no solution
to the optimality and field equations unless a singular point occurs within the
structure. In this case it is not possible to determine the location of the
singularity from the optimality condition and field equations. This location
must. be considered on additional design variable, and consequently its location
will be determined from an additional optimality condition.

For simplicity, it will be assumed that the structure is a beam. In this

case, equation (17) is substituted into equation (31), and the resulting double
integrals are evaluated by reversing the order of the integrations. Thus

éu(y) = - Q(XO)[[GZ(Z’y)]]Z=XO 6x0
- Q(Xo.y)[[UZ(Z)]]zzxo GXO (34)

Since the specific volume v is independent of x,, the optimality condition to
determine x, is obtained directly from equation (34). Thus

Qxo)([64(2,¥) Vxax,
+ 5(x0y>£[uz<z)33x=xo = 0 (35)

Next, consider the problem of minimizing the compliance of a structure.
The compliance C is defined to be the work done by the external loads. Thus

C = (u’f)ﬂ
whence
§C = (8u,f)g (36)
Substitution of equation (32) into equation (36) yields
JE
6C = - (Tu, 5§'58Tu%2

Consequently, the optimality conditon for prescribed volume becomes
oE av
Tu. 55 - Tu = A 33 (37)

Equation (37), in its various specific forms, has been derived by many authors
for specific structures. In virtually all instances, the principle of minimum
potential energy has been an ingredient necessary to the derivation.

The location of any singular points may be determined in the same way that
it was done for the minimum response design. In this case, equation (34) is
substituted into equation (36) to yield

§C = - 2Q(XO)[[UZ(Z)]]z=X 6Xg
o
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The optimality condition to determine x,, therefore, is
[{uy(2)]]guy =0 (38)
(o)
As a final remark, it is pointed out, without elaboration, that the
approach taken in this paper is easily generalized to transient structures.
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N87-18876
3-D MODELING AND AUTOMATIC REGRIDDING
IN SHAPE DESIGN SENSITIVITY ANALYSIS*

Kyung K. Choi and Tse-Min Yao
The University of Iowa
Iowa City, Iowa

The material derivative idea of continuum mechanics (Ref. 1) and the
adjoint variable method of design sensitivity analysis are used to obtain a
computable expression for the effect of shape variations on measures of
structural performance of three—dimensional elastic solids (Ref. 2).

Consider the three-dimensional elastic solid shown in Figure 1, with the
shape of the domain Q as a dssigT varia?}e. In Figure 1, z = [z°, 2%, 2z ]T is
the displacement field and I, I, and are clamped, traction free, and
loaded boundaries, respectively.

Using the principle of virtual work, the variational equilibrium equation
for the elastic solid can be obtained (Ref. 3), where ciJ(z) and EiJ(E) are
the stress tensor due to a displacement z and the strain tensor due t? a, 37
kinematically admissible Yirtgal §i§p1acement z, respectively, f = [f", 7, £7]
is the body force, T = [T", T, T°]" is the traction force, and Z is the space
of kinematically admissible virtual displacement. When the Galerkin method is
applied to the variational equilibrium equation for approximate solution, an
approximate finite-element equation is obtained.

THREE DIMENSIONAL ELASTIC SOLID

13 I‘o

X

L Principle of Virtual Work:
_ 3 P 45 —
ag(z,2) = an[ 7 o (z)eM(z)]an
1,j=1

. 3, _
ez aa + ff L[ ] 7 ar = (D),
r? 1a1

3
SIAP

i=1

for all z€ Z

L FEM Equation is an approximate equation of the variational equation.

Figure 1

*
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Since the shape of domain Q of the elastic solid is treated as the design
variable, it is convenient to think of Q as a continuous medium and utilize
the material derivative idea of continuum mechanics. The process of deforming
Q to Q. by mapping Q_ = T(Q,T) may be viewed as a dynamic process of deforming
a continuum, with t playing the role of time. A design velocity field can be
considered as a perturbation of design variable (Refs. 2 and 4).

Suppose z_(x_) is a solution of the variational equilibrium equation on
the deformed domain QT. Then the mapping zT(xT) = zT(x + Tv(x)) is defined on
2 and z_(x_) depends on T in two ways. First, it is the solution of the
boundary-value problem on QT. Second, it is evaluated at a point x. that
moves with 1. Existence of the pointwise material derivative z is shown in
Ref. 2. If z, has a regular extension to a neighborhood U of the
closure Q_of Q_, then the partial derivative z' exists. One attractive

feature og the partial derivative is that, with smoothness assumptions, it

commutes with the derivative with respect to Xy (Ref. 2). (Fig. 2.)
VARIATION OF DOMAIN
X, = T(x,T) = x + TV(x)
QT = T(Q,T)
dx AT(x,T)
Vix ) = LA
T dt aT

zT(x + TV(x)) - z(x)

«  d -
z =57 zT(x + tV(x)) =0 = lim =
0
T

= z'(x) + Vz V(%)

9z \' a

-] = 5 (2'), i=1,2,3

axi Bxi

Figure 2




A common form of structural performance measure involves stress in an
elastic solid. Consider a locally averaged stress functional ¥ over a small
subdomain @ C @ of the elastic solid, as shown in Figure 3, whePe g(o) is a
stress measure such as von Mises stress or principal stress and m_ is a
characteristic function that has a constant value on Q@ and its iantegral is
1. The averaged stress measure depends on shape of gbg domain in two ways;
first directly on the domain over which the integral is carried out and second
on the stress ¢ that, in turn, depends on the displacement field z.

Taking the first variation of ¥, using material derivative formulas of
Refs. 2 and 5, y' is obtained. To obtain an explicit expression for ¥' in
terms of the velgcity field V, a variational adjoint equation is introfuced by
replacing z€ Z by a virtual displacement AEZ and equating terms involving A
to the energy bilinear form a_ (A, 1), yielding the variational adjoint
equation for the adjoint varigble A

STRESS SHAPE SENSITIVITY

11, glotz))as

b= [[[, glo(z)) m_do = P
P # P [/ 4
Q
p
3 i .
v = fffg[i’JZ=1goij(Z)o (2) In_d@
3 3 . T
S 1 PO N D SRR €3 o A/ C AL T
1,551 k,2-1 o 27 7p
+ fffn g div Vmde - ffo gmde UIQ m div vdQ
3 e _
a0 =ff [ ] g i.(z)clJ(J\)]mpdSZ, for all A € Z

@ i,j=1 o

Figure 3
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Using the adjoint variable method of design sensitivity analysis (Refs. 2
and 4) and the domain method of Ref. 5, an explicit and computable expression
for y! in terms of the velocity field V is obtained. Evaluation of the design
sensitivity ¥ requires the solution z of the original variational equation
and the adjoint variable A of the variational adjoint equation. This is an
efficient calculation, using finite-element analysis, if the original
variational equation for z has already been solved, requiring only evaluation
of the solution of the same set of finite-element equations with a different
right side, called an adjoint load.

For problems with smooth data in which stress is continuous, design
sensitivity analysis results can be used for a pointwise stress functional.
To obtain the formula, shrink the subdomain Q_ to a point X, where x€9 . 1In
this case, the characteristic function becomeg the Dirac delta measure.

Even though sensitivity analysis results for only a stress functional are
presénEed here, the method is also applicable for displacement at a specified
point x and eigenvalue design sensitivity analysis, as shown in Refs. 2 and 5.
(Fig. 4.)

W; = L, (}) - ag(z, )

3 3

T
ijke g k
- fffn . §=1[k §=1gcij(z)clJ (vz VE)]mde

+ II[Q g div Vm df - ffo gn do ffo m, div vde

3 ij 1T ij iT
ay(z,) = - [l T o J2) (M v,y + o () (vt v, )ae
1,j=1 : ;

3, :
s 1LY e ] div vae
i,j=1

3 i iT 3 i1
(A = fffg Y OA(VET v)de + fjfﬂ[ Y £ A ] div vde
i= i=1
3 . T 3 3 .
s ), It v o« (o T e s [ T o )T ar
I i=1 i=1 i=1

® Pointwise stress functional can be treated for problems with smooth data.

Figure 4
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For numerical implementation of shape design sensitivity analysis, the
boundary T of the domain @ must be parameterized. There are several methods
to parameterize the boundary I' (Ref. 6). Since the result of shape
optimization depends on the parameterization method used, it must be general
and flexible enough to represent a large class of structural shapes. It is
desirable that the parameterization method has the following properties:
smoothness, fairness, required order of continuity, controllability in global
and local senses, and a variation diminishing property. Among several
parameterization methods, Bezier and B-spline surfaces are commonly used (Ref.
6). Both Bezier and B-spline surfaces use a set of blending functions and
are defined in terms of characteristic polyhedra.

Points px.(v,w), i=1,2,3, on a Bezier surface are constructed by taking
linear combiniitions of a set of blending functions Bm,M(V) and Dn,N(W) and xg
coordinates € nx of control points (vertices of the characteristic
polyhedron). A ﬁezier surface represented by a 4X4 array of points is shown
in Figure 5. 1If a Bezier surface is used, positions Cnx of the control

points are shape design parameters. 1

MODELING FOR SHAPE (BEZIER SURFACE)

M N
P o) = ] ]

B (v)D_ (w), i=1,2,3
i m=0 n=0 m,M 0, N

C
mnx,.
1

® Positions Cnnx of the control points are shape design parameters.
i

Figure 5
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The next step is to develop a general method of defining and computing a
velocity field in the domain, in terms of the perturbations of the positions
of control points. It is shown in Ref. 7 that regularity of the velocity
field must be at least at the level of regularity of the displacement field of
the structure. This suggests use of displacement shape functions to
systematically define the velocity field in the domain. Moreover, a velocity
field that obeys the governing (elliptic) equation of the structure can he
selected. That is, a perturbation of the boundary can be considered as a
displacement at the boundary. With no additional external forces and a given
displacement at the boundary, the finite-element equation can be used to find
the displacement (domain velocity) field, where {Vb} is the given perturbation
of nodes on the boundary, {V;} is the node velocity vector in the interior of
the domain, and {fb} is the ?ictitious boundary force acting on the varying
boundary.

To use ' in Figure 4 for sensitivity computation, first perturd design
parameter bi Epositions of control points), i=1, 2,+e¢,k, a unit magnitude to
obtain a boundary perturbation {Vb}. Then domain velocity {Vd} is obtained.
Using {V,} and displacement shape functions, ¥' in Figure 4 can be evaluated,
which gives 3y/db, This method requires k solBtions of the velocity
equation. However, much as in adjoint analysis, this is an efficient
calculation, requiring only evaluation of the solution of the same set of
finite-element equations with a different right side for each unit
perturbation of bi’ i=1,2, ees,k. (Fig. 6.)

AUTOMATIC REGRIDDING FOR SHAPE DESIGN

L] Regularity of the velocity field must be the same as that of the
displacement field

. Use of displacement shape functions to define velocity field

(] Velocity field gives transformation mapping T(x,T)
T
K K
bb  bd {Vb} _ {fb}
\ 0
Kpa  Xad d

[k, ) ) = - (%] (%)

(] Solve above equation k-times
L Excellent for boundary layer and/or substructuring technique
Figure 6




The automatic regridding method presented in Figure 6 can be used with
the boundary-layer approach (Ref. 8) and/or substructuring techniques very
effectively. That is, if a large portion of the structure is fixed, except
for the boundary layer (or substructure), then the part of {V,} that
corresponds to the fixed portion can be set equal to zero, thus reducing the
dimension of [Kdd].

Once a design change has been determined using an iterative design
process, regridding of interior grid points can be carried out using {Vd}. 1f
the initial grid is optimized using an adaptive method (Ref. 9), the
regridding method presented will tend to avoid distortion of the finite
elements.

To illustrate use of the automatic regridding method, a fillet problem
(Figure 7) is used. In Figure 7, regridding is performed at three stages. It
is interesting to observe that the method has a tendency to maintain
orthogonality of the elements. That is, if the initial grid is regular, then
the deformed grid tends to be regular. Also, the method presented can be
utilized as mesh generator. That is, starting from a regular shape with a
regularly patterned mesh (Figure 7(a)), the present method can be used to
generate a mesh (Figure 7(d)) directly (Ref. 10).

AUTOMATIC REGRIDDING FOR FILLET PROBLEM

1]
J
JT
N &
M“#\ I
.‘i:"‘"ﬂ\‘»—--.
RANNRN
4 N
e _IX X
(a) (b)
[ { [ 117
[ I ]
J !
- T
' HH 1 ) T
- 117 IS RRE]
I v HHH
d T i MM 1
X % HHHH
(c) (d)
L The method can also be used as a mesh generator.
Figure 7
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To demonstrate use of the automatic regridding method for shape design,
an engine bearing cap (Ref. 11), subject to o0il film pressure and a bolt load,
is treated (Figure 8). 0il film pressure is a radial pressure loading,
assumed to be uniform. The engine bearing cap is modeled as a three
dimensional elastic solid. Due to symmetry, only the right half of the cap is
analyzed. The finite-element configuration and loading conditions are shown
in Figure 8. The mat9rial used is steel, with Young's modulus and Poisson's
ratio of E = 1.0 x 10" psi and v = 0.3, respectively. The finite-element
model shown in Figure 8 contains 82 elements, 768 nodal points, and 2111
active degrees of freedom. For analysis and design velocity fields, the ANSYS
finite-element STIF 95 (Ref. 12), which is a 20-node isoparametric element, is
used. As in Ref. 13, implementation of design sensitivity analysis is
performed outside the ANSYS finite element code.

The shape design variables for this problem are: The shape of the
varying surface TI'., distance cc of clamping bolt center line AB, and distance
Cg of edge from tﬁe cap center?ine. For surface T , a Bezier surface with a
4x4 array of points is used. For simplicity, only x2—coordinates of four
control points c; through ¢, are allowed to vary. That is, surface Fl has
curvature in the xl—direction only.

ENGINE BEARING CAP

CLAMPING BOLT FORCE= 14,775 Ib. Ci C,

/

X

OIL FILM PRESSURE = 5000 psi Cs B
Ce
[} ANSYS STIF95 (20-Node Isoparametric element)
L] 82 elements, 768 nodes, and 211l active DOF
Figure 8




The expression for design sensitivity w; of averaged von Mises stress

over individual finite elements is given in Figure 4, where g(o) is von Mises
1
stress. Define wp

and modified design b + 6b, respectively. Let Awp =¥

2

2
and ¢; as the functional values for the initial design b

1
- and let ¥' be the
p wP P

predicted difference from sensitivity analysis. The ratio ¢L/A¢p times 100 is

used as a measure of accuracy; i.e.,

wxactly the same as the actual change.

1007 means that the predicted change is

Notice this accuracy measure will not

give meaningful information when Awp is very small compared to wl, because the

difference Awp may lose precision due to the subtraction wi - ¢;-

Numerical result with a 1% uniform design change; i.e., &b = 0.01 b, are

shown in Figure 9 for randomly selected finite elements.

Results given in

Figute 9 show excellent agreement between predictions ¥' and actual

changes Awp, except in elements

"

Y

and 57.

change Awp are small for those elements.

However, the magnitudes of actual

SHAPE DESIGN SENSITIVITY FOR ENGINE BEARING CAP, &b = 0.01b
(AVERAGED VON MISES STRESS OVER FINITE ELEMENTS)

El. 1 2 ' ' .
No. wp ¢p A¢p wp (wp/Awpx100)A

1 9829.4564 9727.3229 - 102.1335 - 109.7298 107.4

5 11444 .4800 11448.0190 3.5390 0.4482 12.7
10 17933.5910 17964.5170 30.9260 29.8750 96.6
14 34270.5140 34294.7650 24.2510 23.7614 98.0
20 12670.2480 12634.3500 - 35.8980 - 38.4216 107.0
26 7311.4083 6999.4094 - 311.9989 - 321.7022 103.1
30 7234.2502 7081.2085 - 153.0417 - 159.7947 104.4
35 13328.4650 13264.9790 - 63.4860 - 59.4243 93.6
39 44231.0680 42109.0220  -2122.0460  -2222.5504 104.7
44 5998.6512 5844.9335 - 153.7177 - 165.1199 107.4
48 6822.9614 6736.9477 - 86.0137 - 90.5011 105.2
53 13634.1000 12964.2560 - 669.8440 - 701.6882 104.8
57 6121.4120 6114.6667 - 6.7453 -  8.1242 120.4
62 7041.7283 6971.4204 - 70.3079 - 79.6051 113.2
66 4787.5653 4761.5085 - 26.0568 - 27.6278 106.0
71 6541.8233 6585.9308 44,1075 45.1422 102.4
75 3820.6962 3843.9362 23.2400 22.5210 96.9
80 6240.3854 6285.3485 44.9631 46.3209 103.0

Unit: opsi
Figure 9
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A total hip reconstruction consists of a three-dimensional elastic solid
composed of cement, a metal stem, and cortical and trabecular bone (Figure
10). For simplicity, cortical and trabecular bone are modeled with the same
material properties. Young's modulii and Poisson's ratios for metal stem
cement, and bone are: El = 207 GPa, vl = 0.3, g2 = 2.07 GPa, Vv o= 0.23, and
E3 = 14.0 GPa, v o= 0.3, respectively.

The femur model shown in Figure 10 is obtained by approximating the real
cadaver femur model of Ref. 14 with piecewise linear conical solids. For
simplicity, structural and loading symmetries are assumed . Therefore, only
half of the model is analyzed. A vertical load of 4000 N is applied at the
tip of the metal stem. )

The finite-element model consists of 16 elements for the metal stem, 28
elements for the cement, and 36 elements for the bone. ANSYS element STIF 95
is used for all finite elements. The model has 525 nodes and 1335 active
degrees of freedom. The model is assumed to be fixed at the distal end of the
bone.

TOTAL HIP RECONSTRUCTION (IMPLANT DESIGN)

PREP? - 1HP= > REP? -1HP=

//
P

@ By N/
PSRN
(R N

.

)\
———
I
™
7
AV
17

WJ’ ~ON
THTERFARCE SENSITIVITY A sis. — INYERFACE SENSITIVITY A YSIS.

° Pointwise stress and strain energy density at ianterface.

L 16 elements for stem, 28 elements for cement, and 36 elements for bone
(all ANSYS STIF95).

L] 525 nodes and 1335 active DOF.

Figure 10
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There are 16 shape design parameters: b; through bg are the radius of the
metal stem and bg through b16 are the radius of the outer surface of the
‘cement, at different locations along the center line. Thus, bi+8 - b

i=1,2,...,8 is the thickness of the cement at those locations.
the outer surface of the bone does not change.

1'_’
The shape of

The principal stress is used as a design failure criteria for the metal

stem and bone, whereas strain energy density is considered as the design
failure criteria for cement.

Shape design sensitivity results for pointwise principal stress in the
stem at the stem—cement interface are given in Figure 11, for a 5% design
change in design parameter bS' The pointwise stress is measured at a Gauss

point (out of 9 Gauss points) on stem-cement interface of each stem finite

element.

Results presented in Figure 11 show excellent agreement between

predictions wé and actual changes Ay , except in element 6.
magnitude of actual change Ay

this element, so accuracy of the difference is questionable.

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, &b

5

= 0.05b
(POINTWISE PRINCIPAL STRESS IN THE STEM AT THE STEM-CEMENT INTERFACE)

5

However, the
is small compared to the magnitude of

El. 1 2 ' . g
No. wp IJ)p A¢P ¢P (wP/AwPXIOO)A
1 '65.75792800 65.74896400 -0.00896400 -0.00875783 97.70
2 77.13410600 77.24745600 0.11335000 0.11608011 102.41
3 58.03037400 58.53323000 0.50285600 0.52206340 103.82
4 77.00421000 79.96762700 2.96341700 3.01203420 101.64
5 151.71708000 146.27679000 =5.44029000 -5.35753070 98.48
6 234.54156000 234.78980000 0.24824000 0.68237420 274.88
7 288.65995000 291.58509000 2.92514000 3.00576120 102.76
8 149.94087000 149.70614000 -0.23473000 -0.25492036 108.60
9 20.76092900 20.75818400 -0.00274500 -0.00277719 101.17
10 6.23888850 6.22105300 -0.01783550 -0.01811896 101.59
11 3.99426970 3.91787910 -0.07639060 -0.07985700 104.54
12 6.25765390 6.73601410 0.47836020 0.48739250 101.89
13 15.90449700 15.06538300 -0.83911400 -0.91444092 108.98
14 23.77727200 23.71259200 -0.06468000 -0.06987854 108.04
Unit: MPa
Figure 11

for
wp
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Shape design sensitivity results for pointwise strain energy density of
cement on the bone-cement interface are given in Figure 12, for a 5% design
change in design parameter bg. The pointwise strain energy density is
measured at one of the Gauss points at the bone-cement interface of each
cement finite element.

Results presented in Figure 12 show excellent agreeement between
predictions ¥' and actual changes Ay , except in element 41. However, the

magnitude of wp for this element is small compared to others.

Even though results of sensitivity analysis of a pointwise principal
stress in the stem and pointwise strain energy density in the cement are
glven, for variations of one design parameter for each, variations of all
other design parameters yield similar results. Shape design sensitivity
results for pointwise principal stress in the bone at the bone—cement
interface and for pointwise strain energy density in the cement at the stem—
cement interface are found to be excellent.

SHAPE DESIGN SENSITIVITY FOR IMPLANT DESIGN, 6b9 = O.OSb9

(POINTWISE STRAIN ENERGY DENSITY IN THE CEMENT AT THE BONE-CEMENT INTERFACE)

El! 1 2 1 1 %
No. wP wP Awp wP (wp/AwPXIOO)A
17 2.693386 2.864695 0.171309 0.185526 108.30
18 1.324330 1.346854 0.022525 0.025306 112.35
19 1.358676 1.373181 0.014505 0.016123 111.15
20 2.968939 2.965287 -0.003652 -0.003972 108.76
21 6.532172 6.527846 -0.004325 -0.004688 108.39
22 6.197117 6.196119 -0.000998 -0.001068 107.01
23 12.301795 12.302323 0.000528 0.000569 107.74
38 5.474089 5.847445 0.373356 0.398447 106.72
39 2.187812 2.236401 0.048590 0.053682 110.48
40 2.045186 2.077065 0.031879 0.034058 106.83
41 3.616023 3.616629 0.000606 0.000478 78.88
42 10.974028 10.976652 0.002624 0.002725 103.84
43 16.638003 16.640659 0.002656 0.002837 106.81
44 22.454411 22.455967 0.001556 0.001666 107.05

Unit: kJ/m>

Figure 12
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A doubly curvatured arch dam (Figure 13) that is similar to one treated
by Wassermann (Ref. 15) is optimized using higher order finite-element
approximation and the continuum shape design sensitivity analysis method
presented here.

The dam structure and loading conditions are assumed to be symmetric with
respect to the crown cross section. Thus, only half of the dam is analyzed.
Also, it is assumed that the dam foundation is rigid, and the gravel concrete
is homogeneous and behaves elastically. Concrete's elasticity modulus and
Poisson's ratio are E = 21.0 GPa and Vv = 0.2, respectively. Water and concrete
weight densities are 10.0 kN/m3 and 24.0 kN/m3, respectively.

To parameterize two surfaces (water and free sides), Bezier surface
parameterization is used with a 4X4 array of points. For a shape design
parameter, the xz—coordinates of 32 control points are selected. The dam
finite-element model contains 36 ANSYS STIF 95 elements, 315 nodal points, and
726 active degrees of freedom.

DOUBLY CURVATURED ARCH DAM

PREP? -INP= PREPT - 1NP=

] 36 elements (ANSYS STIF95), 315 nodes, and 726 active DOF.

Figure 13
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The principal stress is used as a design failure criteria. Principal
stresses are measured at Gauss points on the surface of the dam (8 Gauss
points for each finite element). Design sensitivity analysis results are
tested for pointwise principal stresses. Excellent agreement between
predictions and actual changes is obtained.

The optimal design problem for the doubly curvatured arch dam is to
minimize the volume of the dam, subject to coustraints on pointwise principal
stress on the surface of dam and thickness at the top of the dam. For
iterative optimization, Pshenichny's linearization method (Ref. 16) is used.
History of cost function and maximum constraint violation is shown in Figure
14. Afteg 17 design itgrations, cost is reduced from an initial value of
253,566 m” to 182,583 m~ and the maximum tensile stress is reduced from an
initial value of 3.084 MPa to 1.981 MPa.

OPTIMIZATION OF DOUBLY CURVATURED ARCH DAM

L4 Minimize volume subject to:

Principal stress; - 10 MPa < *1
Dam thickness; 6m < tj, j =14

< 2 MPa, i=1,288

ARCH DAM OPTIMIZATION COST-CONSTRAINT HISTORY

3' T T T T T T T T

29 | —o— COST (x10° m3) .
—A— MAX. TENSILE STRESS

27 k (x10° MPa) _

1 | ] 1 1 1

0 2 4 6 8 10 12 14 16 18
ITERATION NUMBER

3

Figure 14




A profile of the final design is shown in Figure 15. The final design
shown in Figure 15 is rather different from Wasserman's design (Ref. 15),
mainly in the bottom portion of the dam. The final design obtained here had
developed a fillet in the bottom corner, which is not observed in Wasserman's
design.

In the crown cross section shown in the Figure 15, the middle portion is
thinner than the top portion. From stress distribution in the final design,
it is observed that the maximum tensile stress in this middle portion is well
below the critical value of 2 MPa. Another interesting observation is that
the compressive stress limit of -10 MPa has never been violated. In fact, at
the final design, the maximum compressive stress is =5.202 MPa.

A PROFILE OF THE FINAL DESIGN

PREP7 ~INP= REP7 -INP=

Figure 15
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Accuracy of the Domain Method for the Material Derivative

Approach to Shape Design Sensitivities

R. J. Yang and M. E. Botkin
General Motors Research Laboratories
Warren, Michigan

Abstract

Numerical accuracy for the boundary and domain methods of the material derivative
approach to shape design sensitivities is investigated through the use of mesh refinement.
The results show that the domain method is generally more accurate than the boundary
method. using the finite element technique. It is also shown that the domain method is

equivalent, under certain assumptions, to the implicit differentiation approach not only
theoretically but also numerically.

Introduction

Haug and Choi et al. !=* developed a unified theory of structural design sensitivity
analysis for linear elastic structures, using a variational formulation of the structural state
equations. This theory allows one to take the total derivative, or material derivative, of
the variational state equation and to use an adjoint variable technique for design sensitiv-
ity analysis. The main attraction of this approach is that it allows one to compute the
derivatives of structural performances analytically. No discretization approximations are
involved during the derivation. and a step size need not be specified in the calculation.
However, the formulation requires evaluating accurate stress quantities on the boundaries
which are often difficult to obtain.

Accuracy of the shape design sensitivity theory was studied in Ref. 5 through the
equilibrium condition for different types of finite elements. However, a systematic study
through the refinement of the finite element mesh was still not found in the literature.

To improve the accuracy of shape design sensitivities. Choi et al. ® proposed a new
domain method which transforms the boundary integrals into domain integrals and there-
fore is less influenced by the the inaccurate boundary stress evaluation. This method takes
advantage of the averaging nature of the finite element method. and is found to be more
accurate than the boundary approach which evaluates the derivatives using boundary in-
formation only 173 . However. a velocity field for the physical domain needs to be defined.
The necessity of defining the domain velocity may indicate that this method is closely
related to the implicit differentiation approach which also requires knowledge about the
domain change for differentiation of the elemental stiffness matrix °.

In this paper. the accuracy of the design sensitivity is studied through finite element
mesh refinement for a cantilever thin plate. Results of the domain and boundary methods
for the material derivative approach and the implicit differentiation approach are shown
and compared.

In a previous paper #, the boundary integral formulation was shown to be equivalent
to the implicit differentiation approach, theoretically. In this report, the domain method
is shown to be equivalent to the implicit differentiation method, both in theoretical and
numerical aspects.

Shape Design Sensitivity Analysis

Two approaches for shape design sensitivity analysis are found in the literature. One is
the well known implicit differentiation approach and the other is the variational or material

FRECEDING PAGE BLANK NOT FiLMED
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derivative approach. Detailed information for these two approaches is available in Refs. 4,
7, and 8. Only a brief background is provided in the following.

For the implicit differentiation approach, the displacement sensitivity is obtained by
differentiating the discretized structural system of equations

Kz = (1)
By assuming that the force vector F is independent of design, this leads to

9z . 0K

where K is the global stiffness matrix, z is the displacement vector, and b, is the design
variable.

The variational design sensitivity theory uses the material derivative concept of con-
tinuum mechanics and an adjoint variable method to obtain computable expressions for
the effect of shape variation on the functionals arising in the shape design problem. The
variation of the displacement functional ¢ with respect to shape change is derived by differ-
entiating the variational equilibrium equation and employing the adjoint variable method,
to obtain 14

s = /F 09(2)e7 (A)Viny, dT (3)
where 1 is defined by
v = /Q 26(z — 7) dO) (4)

in which Z is the point of interest, 6 the Dirac-measure at zero, {I the physical domain, 0%/

and ¢ the stress and strain tensors, respectively, V the design perturbation and can be
thought of as velocity, and n; the unit normal vector of moving boundary I'. The vectors

z and X are the displacement vectors for state and adjoint equations, respectively, which
can be expressed as follows:

/ﬂ o¥(2)€ (2)d0 = /r , Tz dT (5)

/Q o7 (A)e (X) O = /Q §(z — )X dO (6)

where T, is a traction vector, I'? a loaded boundary. and - indicates the virtual displace-
ments that satisfy the kinematically admissible displacement field. The Einstein summa-
tion convention for a repeated index is used throughout this paper.

To obtain Eq. 3, the traction vector T,. the kinematically constrained boundary, and
the loaded boundary are assumed to be fixed during the design process, i.e., they are
independent of design. Note that the variation of the displacement functional of Eq. 3 is
only affected by the normal movement of the boundary of the physical domain.

Physically, the adjoint equation of Eq. 6 is interpreted by applying a unit load at the
point Z, where the displacement sensitivity is of interest. In Eq. 3, one sees that only
the boundary stress information is needed for evaluating the variation of the displacement
functional. Unfortunately, finite element analysis usually does not provide high quality
stress results, especially on the boundary. It has been shown that better finite element
results give better design sensitivity estimates, by examining the equilibrium equations for
different finite elements °.




Domain Method

The basic idea for the domain integral method is to take advantage of the averaging
nature of the finite element method, instead of evaluating the less accurate stresses on the
boundary. Since the finite element method is well known to provide better solutions inside
the finite element, the domain method has the advantage of predicting better sensitivities.

Applying the same procedure as in obtaining Eq. 3 with the domain method, the first
variation of the displacement constraint functional of Eq. 4, is obtained as 46

6w = [ [N 2kVes + 07 (DheVey - 0(2)T (V] )

One should note that Eq. 7 is more general than Eq. 3, since only the loaded boundary
is assumed to be fixed, while both loaded and kinematically constrained boundaries are
assumed to be unchanged in Eq. 3. The kinematically constrained boundary and interface
boundary terms appear when the divergence theorem is used to transform the domain
integral to the boundary integral. It was shown in Ref. 6 that for an interface or built-up
structure problem this method simplifies the formulation and avoids specifying tedious
interface conditions and provides increased accuracy for shape design sensitivities.

To have a better understanding of Eq. 7, each term will be examined individually.

First, since the stress tensor 0¥ is symmetric, the first term of Eq. 7 is divided into two
parts and then integrated by parts to obtain

[%x‘%g-+2$kYA4 dQl

[ = N =

/ﬂ 0" (\)zixViy d = /Q o¥I(A)
)3

2/ o™ (A

T

—/aif(x)l[z 4 2] Vi dn
Q 2 1,kj 1.ki| Yk

[z,-,kanj + z]-,kan,-] dr (8)

By assuming that only the free boundary is varied, the first term of Eq. 8 disappears,
since the traction vector is zero, i.e., *(A)n; = 0*(A)n, = 0. The second term of Eq. 8
then can be further modified to

/Q oU(A)E [zi,k]‘ + z]’,ki] Vi d1 = /Q 0”(’\)5 [zi’jk + zj’ik] Vi dfl

i 1 (9)
=/Q o (Nl (2)V dO

where the velocity Vi can be parametrized as (dz;/3b,)6b;. in which zj is the position
vector and b, is the design variable. Since all the integrals are linear in design, one can
eliminate 6b; or choose the value as a unit number. By interpreting the adjoint variable
A as the inverse of the reduced stiffness matrix K if all the displacement sensitivities are

desired, Eq. 9 is discretized, using the finite element formulation, as®

N
. ’ 2 oz
1) 1y 1 -1 T k
/;) o (M€ (z)Vk dQ = K 51 /ﬂe B DB’k_Bbi z df)

N. (10)
=K7Y [ BTDBlz dn
1 €
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where the subscript ¢ with a prime superscript indicates the derivative with respect to
the it design variable. K, D, and B represent the stiffness, elasticity, and strain recovery

matrices, respectively. The stress-displacement and strain-displacement relationships are
employed in obtaining Eq. 10, which are defined in the following

“7(A) = DBA
(Y (11)
€7 (z) = Bz
Finally, the first term of Eq. 7 1s written as
| N.
/Q (09 (NaiaVis) dr= -k [ BTDBlz an (12)
1 €

The second term of Eq. 7 can also be derived in the same way to obtain a similar
expression as in Eq. 12 as

Ne
fn [09(2) ik Viy] d = —K1Y /Q BT'DB: d0 (13)
l €

Substituting Eqs. 12 and 13 into Eq. 7, the following expressions are obtained

7]
o=,

— /ﬂ [Oij(,\)zi‘ka,j + oij(z)/\,-’ka,]- - U'.J-(Z)Eij(/\)vk,k] dfl

N.
= K1Y /Q BTDB!z + BI'DBz + BT DBzV d0) ”
1 ¢ 14

N,
- K'Y (/Q BTDB] + BI'DB + BTDBV; s d0) 2
1 €

Ne 41 41 =1
= _K! (}: /_1 /_1 /_1 [B"DB! + BT'DB + BTDBVi] | J | dgdndg) 2
1

where | J | is the determinant of the Jacobian matrix J which transforms the undeformed
configuration into the natural coordinate system. The constraint functional change éy: is

equal to dz/8b,, since all displacement sensitivities are calculated and the design change
6b, is chosen as a unit number.

For the implicit differentiation approach of Eq. 2, the derivative of the global stiffness
matrix can be evaluated at the elemental level, i.e.,

0z _10K
gb—i - —K '55;2

Ne (15)
= —K_l (ZK:’) V4

1
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where K¢' is calculated numerically in natural coordinates as 7
+1 p+1 41
Kf':/ / /1 [ BT'DB|J | +BIDB | J | +BTDB|J ;| d¢dnds (1)

Comparing Eqs. 14 and 15, one sees that both are equivalent if the following expression
is valid.

| J =] J | Vi (17)

To prove Eq. 17 is true, one should notice that the determinant of the Jacobian can
be separated into two parts. The first contribution is from the deformed to undeformed
configuration, denoted by | J |4, which depends on design. The other is the contribution
of transformation from the undeformed global to local or natural configurations, denoted
by | J |, which is independent of design. The relationship is expressed in the following
form

| J =l a 1] (18)

where 7 denotes the deformed configuration. Differentiating Eq. 18 with respect to design,
one obtains

| T =l a1 (19)

It was shown in Ref. 4 that | J |}= Vi at 7 = 0, if the design change is assumed to be
equal to a unit vector. Thus, Eq. 19 is identical to the form of Eq. 17, and the equivalence
of Egs. 14 and 15 is proved.

Another way to prove the validity of Eq. 17 is to carry out the differentiation directly
by the definition of the Jacobian. Consider a two-dimensional case as an example, the
right side of Eq. 17 is obained as

| TV, _<azay_az@) v, v,
| kk — 'a—é'a—n —8—77_8&

0z ' 9y (20)
_Oyav, |, 0adV, 0yav, _9ad,
T Oon 0f T 9Edn  8EIn  In I¢
where the velocity V, and V, are defined as
or
V,= o
ob;
L oy (21)
v b
Substituting Eq. 21 into Eq. 20, the following expression is obtained
SV = & (G20 _2on)
| kk = 8b, \0EOn € dn (22)

=|J |

This simple calculation also verifies that the relationship of Eq. 17 is valid. Note that the
design change 6b; is assumed to be unity in Eq. 17.
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Numerical Verification and Comparison

In this section, the equivalence of the domain method and the implicit differentiation
is verified through a simple example. The accuracy of design sensitivities will be examined
and compared through the refinement of the finite element mesh.

A simple two-dimensional thin plate is considered as an example. The finite element
configuration. dimensions, material properties, loading condition, and design variable are
shown in Fig. 1. Design variable b is chosen to move the upper traction free boundary.
The load of 100 Ib is applied parabolically at the right of the plate.

An 8-noded two-dimensional plane stress isoparametric element is employed for analy-
sis. The boundary stresses and strains that appear in Eq. 3 are computed by extrapolat-
ing linearly from the stresses at Gauss points, where the optimal or the best approximate
stresses are located. Numerical results for design sensitivity of point A in the Y-direction
for 1x1, 2x2, 3x3. 4x4, 5x5 and 6x6 meshes are shown in Table 1.

In Table 1, column 1 represents different finite element meshes and column 2 the
displacement of point A in the Y-direction for the initial design, b. Columns 3 and 4
represent the displacement sensitivities at point A of Fig. 1, using the boundary method
(BM) of Eq. 3 and the domain integral (DM) of Eq. 7, respectively, for different meshes.
Column 5 has the results using the implicit differentiation approach (IDA) of Eq. 2. The
derivative of the global stiffness matrix is carried out by differentiating the element stiffness
matrix, analytically.

Fig. 2 shows the same results as in Table 1. From Fig. 2 and Table 1, one observes that
the displacements and the sensitivities for the implicit approach (IDA) do not change much
after 3x3 finite element mesh. However, the design sensitivity for the boundary method
of the variational approach (BM) is still increasing at the limit of mesh refinement. This
implies that the boundary method (BM) is more sensitive to the finite element results,
although it provides the analytical formulation for sensitivities. And one concludes that
the boundary method of the variational approach tends to yield better gradient estimates,
once a more accurate analysis is used and better boundary stresses are obtained. The
same conclusion is also found in Refs. 5 and 8.

Comparing column 4 with 5, one sees that the domain method results (DM) are very
close to those obtained from the analytical implicit differentiation approach (IDA). Clearer
interpretation can be observed from Fig. 2, which plots the displacement and displace-
ment sensitivity versus finite element mesh size. This numerical agreement verifies the
equivalence of the two approaches.

In Ref. 8, the boundary the method was shownto be theoretically equivalent to the
implicit approach. however. they yield slightly different results numerically as also shown
in Table 1 and Fig. 2. The difference results from different numerical schemes for these two
approaches, i.e., one uses the boundary, and the other the domain information. If consistent
numerical schemes are used for the domain method and the implicit approach as in this
report, they are shown to be equivalent, not only theoretically but also numerically.

The disadvantage of the domain method is in computational aspects. Numerical eval-
uation of Eq. 7 is more complicated than evaluation of Eq. 3, because Eq. 7 requires
integration over the entire domain, whereas Eq. 3 requires integration only over the vari-
able boundary. In addition, a velocity field which satisfies regularity properties must be
defined in the domain. The choice of velocity for the physical domain is more difficult than
that for the variable boundary. Although, a boundary layer scheme ® and a displacement-
like velocity field 1© were proposed to alleviate these problems, the domain method still
requires more analyst and computational efforts.




Summary

It is shown that accurate finite element analysis results in accurate design sensitivities.
For the boundary method of the material derivative approach to shape design sensitivities,
the accuracy of the finite element is more crucial, since the finite element method usually
does not give accurate stresses on the boundary.

The domain method is generally more accurate than the boundary method in the
material derivative approach for evaluating the design sensitivities; however, a velocity
field for the physical domain needs to be defined. The necessity of defining a domain
velocity field and integrating the domain integral instead of the boundary integral, as in
boundary method. requires both more analyst time and computational time.

It is also shown that the domain method is equivalent, under certain assumptions,
to the implicit differentiation approach not only theoretically but also numerically. The

numerical equivalence is valid only if the numerical methods used for both approaches are
consistent.
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Table 1. Comparison of Design Sensitivity Accuracy

BM DM IDA
mesh  displacement dv/db dv/db dv/db
1x1 2.495E-5 -4.196E-6 -4.843E-6  -5.248E-6
2x2 2.760E-5 -4.518E-6  -5.167E-6  -5.235E-6
3x3 2.841E-5 -4.856E-6  -5.369E-6  -5.375E-6
4x4 2.845E-5 -4.995E-6  -5.391E-6  -5.394E-6
5x5 2.854E-5 -5.093E-6  -5.412E-6  -5.413E-6
6x6 2.856E-5 -5.158E-6  -5.425E-6  -5.426E-6
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SENSITIVITY ANALYSIS FOR LARGE-SCALE PROBLEMS
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INTRODUCTION

Due to the wide variety of uses of sensitivity derivatives, the development of
efficient computational procedures for the calculation of these derivatives has at-
tracted considerable attention in recent years. The calculation of sensitivity
derivatives forms the backbone of many optimization procedures and is the major
contributor to the cost and time of optimization of large systems. In addition,
sensitivity derivatives have several other applications in structural mechanics in-
cluding approximate analysis (and reanalysis) techniques, analytical model improve-
ment, and assessment of design trends. A review of the state of the art in
sensitivity calculations is contained in a survey paper (Ref. 1), a monograph
(Ref. 2), as well as in some papers in these proceedings. Despite all the recent
advances made, the calculation of sensitivity derivatives for large structural
systems (with large number of degrees of freedom and design variables), is quite
expensive even on present-day large computers.

The present study focuses on the development of efficient techniques for cal-
culating sensitivity derivatives. Specifically, the objective and scope of the
present paper are listed in Fig. 1. The objective is to present a computational
procedure for calculating sensitivity derivatives as part of performing structural
reanalysis for large-scale problems. The scope of the paper is limited to framed
type structures. Both linear static analysis and free-vibration eigenvalue problems
are considered.

Objective

® To present a computational procedure for calculating
sensitivity derivatives as part of performing structural
reanalysis for large-scale problems

Scope

® Frame-type structures
® Linear static analysis

@ Eigenvalue problems

Figure 1
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BASIC IDEA AND KEY ELEMENTS OF THE PROPOSED PROCEDURE

The basic idea and the three key elements of the proposed procedure are listed
in Fig. 2. The basic idea is to generate the solution of the modified structure
using large perturbations from that of the original structure. The three key ele-
ments are: a) lumping of the large number of design variables into one (or a small
number of) tracing parameters; b) application of operator splitting/reduction
technique; and c¢) for very large problems, use of single-level or multilevel sub-
structuring. Only the first two key elements are discussed in this paper. The
application of operator splitting/reduction technique proved to be effective in

reducing the computational effort in a number of structural mechanics problems (see,
for example, Refs. 3 to 6).

Basic idea

® Solution for modified structure is obtained using large
perturbations from that of original structure

Key elements

® Lumping of design variables into tracing parameter(s)
@ Application of operator splitting/reduction technique
® Use of multilevel substructuring (for very large problems)

Figure 2
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APPLICATION TO LINEAR STATIC ANALYSIS
In Fig. 3 the application of the proposed procedure to linear static analysis
is outlined. The governing finite element equations of the original and modified

structures are shown. The global stiffness matrices, load vectors, and responses
of the original and modified structures are designated by [K]O, [k]; {P}o, {P}; and

{X}O, {X}, respectively. The original and modified structure characteristics cor-

%
respond to the values of dg and di of the design variables, respectively.

The operator splitting technique is now applied, and the equations of the
modified structure are expressed in terms of the original structure equations plus
correction terms. A tracing parameter )\ is introduced and is attached to the cor-
rection terms. The tracing parameter is dimensionless and identifies alf the design

modifications. The original structure equations correspond to A=0, and the modified
structure equations correspond to A=l.

Operator splitting

Original structure
[K] xp, = tph s [K] =[ke]
Modified structure
K] txt={pP}; [K]

or[[K]o £ ([K] - [K]O)]{X}

0 — Original structure
1 — Modified structure
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REDUCTION METHOD FOR STATIC PROBLEMS

The response of the modified structure, {X}, is now expressed as a linear com-
bination of a few preselected global approximation vectors (or modes). This is
expressed by the transformation shown in Fig. 4. The columns of the matrix [T'] are
the global approximation vectors, and the elements of the vector {y} are the ampli-
tudes of the approximation vectors which are, as yet, unknowns. Note that the

number of global approximation vectors, r, is considerably smaller than the total
number of degrees of freedom, n.

A Rayleigh-Ritz technique is now used to approximate the governing equations of
the modified structure by a much smaller system of equations in the unknowns {¢}.

Basis reduction

{X}n,1= [r]n,r {w}r,l . r <<n

where {¢y} = amplitudes of global approximation vectors

Reduced system of equations

Rayleigh -Ritz technique used to approximate the equations of
the modified structure

(Ko + M([K] - (K], )= 1, -n(Bh-18 )

1t

e

where (k] = [r]'[K], [r]
~ ot
k] = [r] [x][r]
{F}o = r t{P}o
®r =[]t
Figure 4
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SELECTION AND EVALUATION OF THE GLOBAL APPROXIMATION

The effectiveness of the proposed procedure depends, to a great extent, on the
proper choice of the global approximation vectors. In the present study the global
approximation vectors are selected to be the response of the original structure,
{X}o, and its various-order derivatives with respect to the parameter A. The re-
cursion relations for evaluating the approximation vectors are obtained by successive
differentiation of the original finite element equations. Note that the matrix on
the left hand sides of these equations, [K]O, is the same (see Fig. 5).

Same left har;d side.

Figure 5
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COMPUTATIONAL PROCEDURE

The computational procedure for generating the solution of the modified struc-
ture and the sensitivity derivatives is outlined in Fig. 6.

The first step is to generate the global approximation vectors at A=0 through
decomposition of the stiffness matrix of the original structure. The derivatives
with respect to X\ provide information about the sensitivity of the response to all
the design modifications. Because A is dimensionless, the derivatives with respect
to A have the same dimensions as the original response quantities, and consequently

an assessment of the effect of desigh modifications on the response can be easily
made.

The second step is to generate the reduced equations and solve them for the
amplitudes of the global approximation vectors.

® Evaluate global approximation vectors at A = 0

® Derivatives with respect to A represent sensitivity of
the response to design modifications

® Generate reduced equations

® Solve reduced equations and find amplitudes of
global approximation vectors

Figure 6

362




RELATIONSHIP BETWEEN THE PRECONDITIONED CONJUGATE GRADIENT (PCG)
TECHNIQUE AND THE PROPOSED COMPUTATIONAL PROCEDURE

If the proposed computational procedure is contrasted with the preconditioned
conjugate gradient (PCG) technique in which the preconditioning matrix is selected
to be the global stiffness matrix of the original structure, [K] ,» the relationships
shown in Fig. 7 can be identified. These relations express the 8reconditioned re-—
siduals {y}o, {y}l, ... of the PCG technique in terms of the global approximation

oX BZX
vectors of the foregoing technique, {SXJ f—~§} s senn

3A" o

Equivalence
[0, + NI - [, )t = wh+ a(ier - e )

[K] 0= preconditioning matrix

‘ PCG Proposed procedure
{X}, =T {x},
Preconditioned
residuals
Mo == 13
0 oA
C .2
{y} =t—ua-c) {%—);} +§°-{°——)-‘}
0 ) S
b o 2]
—~— .
I =1 J Gy
0
Figure 7
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IMPLICATIONS OF THE SIMILARITIES BETWEEN THE PROPOSED
PROCEDURE AND THE PCG TECHNIQUE

The implications of the similarities between the proposed computational pro-
cedure and the PCG technique are listed in Fig. 8.

For the PCG technique, the similarities can be exploited to provide a rational
approach for selecting the preconditioning matrix (as the global stiffness matrix
of the original structure), and a physical meaning for the preconditioned residual
vectors (in terms of sensitivity derivatives).

For the proposed procedure, some of the work done on parallelizing the PCG on
multiprocessor computers can be exploited.

PCG

® Rational choice for preconditioning matrix

® Physical meaning for preconditioned residuals
(in terms of sensitivity derivatives)

Proposed procedure

® Exploiting work done on parallelizing PCG on
multiprocessor computers

Figure 8
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APPLICATION TO EIGENVALUE PROBLEMS

The application of the proposed computational procedure to free vibration
(eigenvalue) problems is outlined in Fig. 9. The governing equations of the origin- ’
al and modified structures are shown. Again, the operator splitting technique is
applied, and the stiffness and mass matrices of the modified structure are written
as the sum of the corresponding matrices of the original structure plus correction
terms. The correction terms are identified by the tracing parameter XA. When X=0,
the original structure equations are recovered, and when A=1 the modified structure

equations are obtained.

Operator splitting

Original structure

K], - o], |, =0

Modified structure

(K] - Q[M]]{X}= 0

(K], - 2m],) +A([d, - alv],)lixi= o

or,

=

M =0 — original structure
AN =1 — maodified structure

Figure 9
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REDUCTION METHOD FOR EIGENVALUE PROBLEMS

The application of the reduction method to the free vibration problem is outlined
in Fig. 10. As in the static analysis, the eigenvectors of the modified structure,
{X}, are approximated by a linear combination of a few global approximation vectors.
This is accomplished by the transformation shown. An efficient choice of the ap-
proximation vectors was found to be a few eigenvectors for the original structure
(corresponding to =0) and their derivatives with respect to A, evaluated at A=0.

Then, the Rayleigh-Ritz technique is used to approximate the original large

eigenvalue problem by the reduced one shown in Fig. 10. The solution of the reduced
eigenvalue problem gives the amplitudes of the global approximation vectors.

Basis reduction

® Eigenvectors of modified structure, {X}, are approximated by:
b= [ tod 5 r<<n

1= oy B, 108w, 28,

where

Reduced system of equations

® Rayleigh-Ritz technique is used to approximate the original
eigenvalue problem by a reduced one

(K], =

~ ~ ~

i)+ (|, - o) o

t

—

where K] =[r] [x] Ir
“ (et

k|, =[r]"[«], Ir!

M =[] ] [r

M), =[] [m],[r

Figure 10
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EVALUATION OF GLOBAL APPROXIMATION VECTORS

The recursion equations used in generating the eigenvectors at A=0 and their
first derivatives with respect to A are shown in Fig. 11. Note that the left hand
sides of all these equations are the same. The expression of the first derivatives
of the eigenvalues with respect to A appearing on the right hand sides of the equ-
ations are given in Fig. 11.

Since the matrix on the left hand side of the recursion equations used in
evaluating these derivatives is singular, the solution of each set of equations can
be expressed as the sum of a homogeneous solution (multiple of the eigenvector) and
a particular solution, {Q},. The equations used in evaluating the particular solu-
tion {Q}l are given in Fig. 11. The details of this procedure are given in Ref. 5.

‘ Recursion formulas

r~ -

_[K]O—Q[M]OJ X} =0
)

-0, {53 =3% [0+ > )oK, - 2]

=9

Where {Q}l = particular solution.

Figure 11
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COMPUTATIONAL PROCEDURE FOR EIGENVALUE PROBLEMS
The procedure for extracting the eigenvectors of the modified structure and for
generating the sensitivity of the eigenvectors to design modifications is outlined

in Fig. 12.

First: A few eigenvectors of the original structure (corresponding to A=0) are
generated.

Second: The derivatives of the eigenvectors with respect to A are generated at
A=0. In the process, derivatives of the eigenvalues are also computed. These de-
rivatives provide sensitivity information regarding the effect of all the design
modifications on the eigenvectors and eigenvalues. The reduced equations are
generated.

Third: The reduced eigenvalue problem is solved at A=1.

® Generate eigenvectors for original structure (A = 0)

® Generate global approximation vectors (derivatives of
eigenvectors w,r.t, A) and reduced equations, In the
process, derivatives of Q w,r.t, A are computed

® Solve reduced eigenvalue problem at A = 1

Figure 12
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CANTILEVERED LATTICE TRUSS

To assess the effectiveness of the proposed computational procedure, a number
of problems were solved by this procedure. Comparison was made with the direct solu-
tion of the structure. Herein a typical problem of a five-bay cantilevered lattice
truss is considered (see Fig. 13). 1In the original structure all the longerons had
the same cross section, and all the battens and diagonals had the same cross section.
The design variables consisted of the cross sectional areas, moments of inertia and
torsional constants. The characteristics of the original and modified structures
are given in Fig. 13.

\Izlrst bay

16 Design variables (8 varied)
4 Cross-sectional areas
8 Moments of inertia

4 Torsional constants

"o [10x A 2i0'x1, aho'x 1, ahoxs s
1 0.3 6.0 6.0 1.2
2 0.15 0.65 | 06 | 013
0. 6495 m 3 0,075 1.5 1.5 0.3
Y 4 0,04 0.15 0.15 0.03
T0hBm

Original design: Longerons — type 1
Battens and diagonals — type 2

Modified design: First bay — Longerons — type 1
Battens and diagonals — type 2

Other bays — Longerons — type 3
Battens and diagonals — type 4

Figure 13
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STATIC LOADING

The first problem considered is that of the static response due to a transverse
load in the z direction at the free end of the cantilever. Figure 14 shows a sum-
mary of the results. The transverse displacement w and rotation at the free end
(point a) of the original structure are given. The sensitivity of these quantities

3 d X
to design modifications is provided by {3§}Oand {——i}' Also shown in Fig. 14 are
o

the corresponding w and ¢, for the modified structure (which are considerably larger
than those for the original structure). The solution obtained using the proposed
procedure with four global approximation vectors was identical to the direct solution
of the modified structure to at least three significant digits.

Static analysis

w at a 0P at a
Original e 0. 102 -0.0397
structure
A= 0 {%ﬁ} 0.0737 -0.0257
0
{ X } 0.110 -0.0388
Ay,
Modified r =2 0.3%4 -0. 142
structure
_ r=4 0.394 -0.143
A=l
{X}
Full system 0.3% -0.143
Figure 14
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FREE VIBRATIONS

The second problem considered is that of the free vibrations of the same lattice
structure. Figure 15 shows a summary of the results. The first three eigenvalues
(squares of the vibration frequencies) and their first two derivatives with respect
to X are listed. The corresponding eigenvalues of the modified structure are also
listed. The frequencies predicted by the proposed procedure with eight approximation
vectors (four eigenvectors and their first derivatives with respect to 1) and twelve
approximation vectors (four eigenvectors and their first two derivatives with respect
to A) are listed. The predictions of the eight-vector approximation are accurate for
the first two eigenvalues, but not the succeeding ones. On the other hand, the pre-
dictions of the twelve-vector approximation are accurate for the first three

eigenvalues.

Mode
1 2 3

Original | 10°x @ 0.324 0.502 1.815
structure 30
A =0 10°x 3% 0,134 0,207 0,486

10 “ x 5 -0.0911 -0.141 -0. 472

structure

A
Modified 5| r=38 0.122 0.191 0.583
) =1 Q r=12 0.122 0.191 0. 896

Full 0,122 0.191 0. 896

Figure 15
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MODE SHAPES
The first three mode shapes of the modified structure are shown in Fig. 16.

Note that the first two vibration modes are bending modes and the third is a
torsional mode.

Free vibrations

5 p) 5
1 QZ 9.191x 10 Q3 = (0,89 x 10

Q. =0122x10

Figure 16
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SUMMARY
In summary, a computational procedure has been developed for calculating the
sensitivity derivatives of large structural systems as part of structural reanalysis

(see Fig. 17). The three key elements of the procedure are:

a) lumping of the large number of design variables into one (or small number
of) tracing parameter(s);

b) application of operator splitting/reduction technique; and,

c) for very large problems use of multilevel substructuring technique.

The proposed procedure can be considered as a general computational strategy for
generating the response of the modified structure using large perturbations from the
response of the original structure.

For static problems the similarities between the proposed procedure and precon-
ditioned conjugate gradient technique are identified and are exploited to provide a
rational procedure for selecting the preconditioning matrix and a physical meaning
for the preconditioned residual vectors.

Future work includes:

o extension to more complex structures and to shape design modifications

o generation of sensitivity information with respect to design variables.

® Computational procedure presented for calculating
sensitivity derivatives as part of performing
structural reanalysis for large-scale problems

® Lumping of design variables into tracing parameter(s)
o Application of operator splitting/reduction technique
e Use of multilevel substructuring

® Future work includes:

e Extension to more complex structures and to shape
design modifications

® Generation of sensitivity information w,r.t, design variables

Figure 17
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